### Article

## Субоптимальное управление нелинейным объектом, линеаризуемым обратной связью

An optimal control problem is formulated for a class of nonlinear systems for which there exists a coordinate representation (diffeomorphism) transforming the original system into a system with a linear main part and a nonlinear feedback. In this case the coordinate transformation significantly changes the form of original quadratic functional. The penalty matrices become dependent on the system state. The linearity of the structure of the transformed system and the quadratic functional make it possible to pass over from the Hamilton–Jacoby–Bellman equation to the Riccati type equation with state-dependent parameters upon the control synthesis. Note that it is impossible to solve the obtained form of Riccati equation analytically in the general case. It is necessary to approximate the solution; this approximation is realized by numerical methods using symbolic computer packages or interpolation methods. In the latter case, it is possible to obtain the suboptimal control. The presented example illustrates the application of the proposed control method for the feedback linearizable nonlinear system.

The theoretical fundamentals for solving the linear quadratic problems may be some times used to design the optimal control actions for the nonlinear systems. The method relying on the Riccati equation with state-dependent coefficients is promising and rapidly developing tools for design of the nonlinear controllers. The set of possible suboptimal solutions is generated by ambiguous representation of the nonlinear system as a linearly structured system with state-depended coefficients and the lack of sufficiently universal algorithms to solve the Riccati equation also having state-depended coefficients. The paper proposed a method to design a guaranteed control for the uncertain nonlinear plant with state-depended parameters. An example of design the controller for an uncertain nonlinear system was presented.

Quite many engineering problems, problems from ecology, medicine, and social sciences are characterized by the presence of factors bringing uncertainty into the corresponding control systems. Additional difficulties for control action construction arise in the case when the objects are described by nonlinear highorder evolutionary equations. An important subset of these objects consists of the object with interval parametric uncertainty with a given control objective and with a given a given termination time of the transient process. For this objects, one of the possible ways of control action synthesis is the application of the guaranteed control concept. We propose the method of control synthesis for one class of nonlinear uncertain objects with using their robust models having linear structure and the parameters, depending on their state.

Mathematical models of nonlinear systems of a certain class allow them represented as linear systems with nonlinear state feedback. In other words, let make the appropriate coordinate transformation of the original dynamic model. Such a transformation, using Lyapunov functions, a number of studies used to determine the parameters of regulators to ensure the asymptotic stability properties of the nonlinear system, ie guaranteeing bounded trajectories emanating from the initial states of the system. For linear systems, there is a powerful and convenient mathematical apparatus allows the synthesis of optimal controls, but this unit is not applicable or partially applicable for nonlinear systems. Unlike prior work in this paper for nonlinear systems linearizable feedback as in the synthesis of optimal control problems with quadratic performance applied the method based on the use of the Riccati equation with parameters depending on the state.

The problem of robust admissibilization with guar- anteed random disturbance attenuation level for discrete-time time-invariant (LDTI) descriptor systems with norm-bounded uncertainties is considered. The input disturbance is supposed to be a stationary Gaussian sequence with bounded mean anisotropy level. The solutions to analysis and robust state- feedback control problems are formulated in terms of matrix inequalities. The obtained conditions are convex over all decision variables and do not require inverse matrix searching. Compar- ison between iterative [1], [2] and non-iterative methods is given.

The estimation of reachability sets for systems of high dimensions is a challenging issue due to its high computational complexity. For linear systems, an efficient way of calculating such estimates is to find their set-valued approximations provided by ellipsoidal calculus. The present paper deals with various aspects of such approach as applied to systems of high dimensions with unknown but bounded input disturbances. We present an innovative technique based on parallel computation that involves on-line mixing of ellipsoidal tubes found in parallel. This improves robustness of the ellipsoidal estimates. Finally discussed is an implementation of the algorithm intended for supercomputer clusters.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.