### Article

## Typology of Networks and Equilibria in a Network Game with Production and Knowledge Externalities

This paper considers a network game as follows. In each node of a network, economy

is described by the simple two-period Romer’s model of endogenous growth with production

and knowledge externalities. The sum of knowledge levels in the neighbor nodes causes an

externality in the production of each network node. The concept of node type is introduced

and a corresponding typology of networks is suggested. As demonstrated below, all inner

equilibria of the game are determined by this typology. For several typologies, the equilibrium

knowledge levels are found in explicit form for the nodes that have different positions in the

network.

In this paper, we consider the following problem - what affects the amount of investment in knowledge when one of the network firms enters another innovation network. The solution of this problem will allow us to understand exactly how innovative companies will behave when deciding whether to enter the innovation network of another country or region, what conditions affect it and how the level of future investments in knowledge can be predicted.

In this paper we consider games with preference relations. The cooperative aspect of a game is connected with its coalitions. The main optimality concepts for such games are concepts of equilibrium and acceptance. We introduce a notion of coalition homomorphism for cooperative games with preference relations and study a problem concerning connections between equilibrium points (acceptable outcomes) of games which are in a homomorphic relation. The main results of our work are connected with finding of covariant and contravariant homomorphisms.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

The paper proposes a list of requirements for a game able to describe individually motivated social interactions: be non-cooperative, able to construct multiple coalitions in an equilibrium and incorporate intra and inter coalition externalities. For this purpose the paper presents a family of non-cooperative games for coalition structure construction with an equilibrium existence theorem for a game in the family. Few examples illustrate the approach. One of the results is that efficiency is not equivalent to cooperation as an allocation in one coalition. Further papers will demonstrate other applications of the approach.

The core problem considered in the article is dedicated to the revealing of project system elements, where the network modeling can be adopted to management. Using of Web of Science and ProQuest databases provided with the opportunity of publication activity statistics research and with the definite articles and other types of publications’ analysis for the search of basic directions of network theory adoption for project management. The identification of the most demanded and actual directions of network approach and social network analysis application to management of project system elements was fulfilled.

In this paper we consider games with preference relations. The main optimality concept for such games is concept of equilibrium. We introduce a notion of homomorphism for games with preference relations and study a problem concerning connections between equilibrium points of games which are in a homomorphic relation. The main result is finding covariantly and contravariantly complete families of homomorphisms.

The ninth issue of annual Collection of articles consists of four sections: “Analysis of actual economic processes”, “Modeling of financial and market mechanisms”, “Dynamic models”, “Discussions, Notes and Letters”. As a whole nine articles are presented

For n person games with preference relations some types of optimality solutions are introduced. Elementary properties of their solutions are considered. One sufficient condition for nonempty Ca-core is found.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.