• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Qu’apprend-on des machines apprenantes?

Zilsel. Science, Technique, Société . 2019. No. 5. P. 446-468.

L’ouvrage d’Adrian Mackenzie, professeur au Département de sociologie à l’Université de Lancaster, est d’un genre inédit au sein de la littérature émergente, mais encore peu étendue en sciences humaines et sociales, qui explore le fonctionnement du machine learning (ML). Les avancées spectaculaires de cette branche de l’intelligence artificielle (IA) depuis quelques années ont éclipsé les autres approches en la matière et ont soudainement transformé l’IA en un problème social et politique. Plusieurs auteurs ont déjà insisté sur la nécessité de focaliser le regard sur les outils de l’IA, en pointant les limites des travaux qui ne traitent que des effets sociaux des « algorithmes ». Comme le fait remarquer l’anthropologue des sciences et des techniques Nick Seaver, la plupart des travaux sur le sujet s’agitent au sujet des « algorithmes » ou le « big data », en insistant sur leurs effets néfastes, voire catastrophiques, pour la société sans jamais préciser exactement ce qu’ils sont. Le transfert des connaissances et des perspectives entre les spécialistes en IA et en SHS (d’ailleurs dans les deux sens) est pourtant indispensable pour en proposer une critique informée et efficace.