### Article

## On a Deep Bed Filtration Problem with Finite Blocking Time

We consider an initial{boundary value problem for a simple semilinear ltration

equation with nonunique characteristics and prove that uniqueness nevertheless holds for the

solution of this problem. The solution is then constructed by quadratures.

Filtration problems in porous media are important for studying the movement of groundwater in porous formations and the spreading of liquid concrete injected into porous soil. Deep bed filtration of a monodisperse suspension in a homogeneous porous medium with two simultaneously acting particle capture mechanisms is considered. A mathematical model of suspension flow through porous medium with pore blocking by size-exclusion and arched bridging is developed. Exact solutions are obtained on the concentration front and at the porous medium inlet. For the linear filtration function, exact and asymptotic solutions are constructed.

A class of non-stationary surface gravity waves propagating in the

zonal direction in the equatorial region is described in the f -plane approx-

imation. These waves are described by exact solutions of the equations of

hydrodynamics in Lagrangian formulation and are generalizations of Gerstner

waves. The wave shape and non-uniform pressure distribution on a free sur-

face depend on two arbitrary functions. The trajectories of uid particles are

circumferences. The solutions admit a variable meridional current. The dy-

namics of a single breather on the background of a Gerstner wave is studied as

an example.

-------------------------------------

Filtration of the suspension in a porous medium is important when strengthening the soil and creating watertight partitions for the construction of tunnels and underground structures. A model of deep bed filtration with variable porosity and fractional flow, and a size-exclusion mechanism of particle retention are considered. A global asymptotic solution is constructed in the entire domain in which the filtering process takes place. The obtained asymptotics is close to the numerical solution.

The Cell Formation Problem (CFP) is an NP-hard optimization problem considered for cellular man- ufacturing systems. Because of its high computational complexity there have been developed a lot of heuristics and almost no exact algorithms for solving this problem. In this paper we suggest a branch- and-bound algorithm which provides exact solutions for the CFP with the grouping efficacy objective function. To linearize this fractional objective function we apply the Dinkelbach approach. Our algorithm finds optimal solutions for 24 of the 35 popular benchmark instances from literature and for the remaining instances it finds good solutions close to the best known. The difference in the grouping efficacy with the best known solutions is always less than 1.5%.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.