### Article

## Scattering on a rectangular potential barrier in nodal-line Weyl semimetals

We investigate single-particle ballistic scattering on a rectangular barrier in the nodal-line Weyl semimetals. Since the system under study has a crystallographic anisotropy, the scattering properties are dependent on mutual orientation of the crystalline axis and the barrier. To account for the anisotropy, we examine two different barrier orientations. It is demonstrated that, for certain angles of incidence, the incoming particle passes through the barrier with probability of unity. This is a manifestation of the Klein tunneling, a familiar phenomenon in the context of graphene and semimetals with Weyl points. However, the Klein tunneling in the Weyl-ring systems is observed when the angle of incidence differs from 90∘, unlike the cases of graphene and Weyl-point semimetals. The reflectionless transmission also occurs for the so-called “magic angles.” The values of the magic angles are determined by geometrical resonances between the barrier width and the de Broglie length of the scattered particle. In addition, we show that under certain conditions the wave function of the transmitted and reflected particles may be a superposition of two plane waves with unequal momenta. Such a feature is a consequence of the nontrivial structure of the isoenergy surfaces of the nodal-line semimetals. Conductance of the barrier is briefly discussed.

This book is the proceedings of the IX International Conference for Professionals & Young Scientists “LOW TEMPERATURE PHYSICS” ICPYS LTP 2018 dedicated to the 100th anniversary of the National Academy of Sciences of Ukraine, and contains 150 peer-reviewed abstracts. These materials present and discuss the studies of modern aspects of experimental and theoretical physics at low and ultralow temperatures, including electronic properties of conducting and superconducting systems, magnetism and magnetic materials, optics, photonics and optical spectroscopy, quantum liquids and quantum crystals, cryocrystals, nanophysics and nanotechnologies, biophysics and physics of macromolecules, materials science, theory of condensed matter physics, technological peculiarities of the instrumentation for physical experiments, and other related fields.

The effect of spherical quantum objects (scatterers) embedded into semiconductor barriers on the tunnel current flowing through them has been studied. For this purpose, the problem of the scattering of incident and reflected wave functions (damping if their energy is less than the barrier potential) of the electron by the stepwise spherically symmetric scattering potential has been solved.

We show that there exists a non-trivial topological phase in circular two-dimensional quantum dots with an odd number of electrons. The possible non-zero value of this phase is explained by axial symmetry of two-dimensional quantum systems. The particular value of this phase (1995). Hence, these data may be considered as the first experimental evidence for the existence of topological phase leading to half-integer quantization of the orbital angular momentum in circular quantum dots with an odd number of electrons.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .

The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.