### Article

## Entire functions that deviate least from zero in the uniform and the integral metrics with a weight

Results of Chebyshev and Bernstein about polynomials with the smallest deviation from zero in a weighted norm are extended to entire functions of exponential type. Suppose that a function \rho_m belongs to the Cartwright class, is of type m, and is positive on the real axis. Let \sigma\geqslant m. Functions that have the smallest deviation from zero among the entire functions of type \sigma are constructed in the uniform and integral metrics.

For more than a century, the constructive description of functional classes in terms of the possible rate of approximation of its functions by means of functions chosen from a certain set remains among the most important problems of approximation theory. It turns out that the nonuniformity of the approximation rate due between the points of the domain of the approximated function is substantial. For instance, it was only in the mid-1950s that it was possible to constructively describe Holder classes on the segment [–1; 1] in terms of the approximation by algebraic polynomials. For that particular case, the constructive description requires the approximation at neighborhoods of the segment endpoints to be essentially better than the one in a neighborhood of its midpoint. A possible approximation quality test is to find out whether the approximation rate provides a possibility to reconstruct the smoothness of the approximated function. Earlier, we investigated the approximation of classes of smooth functions on a countable union of segments on the real axis. In the present paper, we prove that the rate of the approximation by the entire exponential-type functions provides the possibility to reconstruct the smoothness of the approximated function, i.e., a constructive description of classes of smooth functions is possible in terms of the specified approximation method. In an earlier paper, that result is announced for Holder classes, but the construction of a certain function needed for the proof is omitted. In the present paper, we use another proof; it does not apply the specified function.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.