### Article

## Functional Integration for Quantum Magnets: New Method and New Results

The representation of the generating functional for quantum Heisenberg ferromagnets as an integral over two uncostrained *c*-number valued fields, charged and neutral, obeying the initial conditions (instead of commonly used periodic boundary conditions) is obtained. With the help of this representation the long-time dynamics of the longitudinal spin component at low temperatures is studied. The infrared-singular part of effective action is calculated for the longitudinal fluctuations in 3D-quantum antiferromagnets as well.

We propose a new approach based on the path integral formalism to the calculation of the probability distribution functions of quadratic quantities of the Gaussian polymer chain in d-dimensional space, such as the radius of gyration and potential energy in the parabolic well. In both cases we obtain the exact relations for the characteristic function and cumulants. Using the standard steepest-descent method, we evaluate the probability distribution functions in two limiting cases of the large and small values of corresponding variables.

In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, the solid state systems, particularly, semiconductors and semiconductor nanosystems, allow us to perform benchtop studies of quantum and relativistic phenomena. On the other hand, this interest is supported by the prospects of realizing spin-based electronics, where the electron or nuclear spins may play a role of quantum or classical information carriers. This book looks in detail at the physics of interacting systems of electron and nuclear spins in semiconductors, with particular emphasis on low-dimensional structures. These two spin systems naturally appear in practically all widespread semiconductor compounds. The hyperfine interaction of the charge carriers and nuclear spins is particularly prominent in nanosystems due to the localization of the charge carriers, and gives rise to spin exchange between these two systems and a whole range of beautiful and complex physics of manybody and nonlinear systems. As a result, understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and controlling the spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and spin-Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focussing, as well as fluctuations of electron and nuclear spins.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.