• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

The role of diffraction effects in extreme runup inundation at Okushiri Island due to 1993 tsunami

Natural Hazards and Earth System Sciences. 2015. Vol. 15. No. 4. P. 747-755.
Pelinovsky E., Choi B., Kim K., Kim D., Jung K., Yuk J.
The tsunami generated on 12 July 1993 by the Hokkaido–Nansei–Oki earthquake (Mw D7.8) brought about a maximum wave run-up of 31.7 m, the highest recorded in Japan during the 20th century, near the Monai Valley on the west coast of Okushiri Island (Hokkaido Tsunami Survey Group, 1993). To reproduce the extreme run-up height, the three-dimensional non-hydrostatic model (Flow Science, 2012), referred to here as the NH-model, has been locally applied with open boundary conditions supplied in an offline manner by the three-dimensional hydrostatic model (Ribeiro et al., 2011), referred to here as the H-model. The area of the H-model is sufficiently large to cover the entire fault region with one-way nested multiple domains. For the initial water deformation, Okada’s fault model (1985) using the sub-fault parameters is applied. Three NH-model experiments have been performed, namely without islands, with one island and with two islands. The experiments with one island and with two islands give rise to values close to the observation with maximum runup heights of about 32.3 and 30.8 m, respectively, while the experiment without islands gives rise to about 25.2 m. The diffraction of the tsunami wave primarily by Muen Island, located in the south, and the southward topographic guiding of the tsunami run-up at the coast are, as in the laboratory simulation (Yoneyama et al., 2002), found to result in the extreme run-up height near Monai Valley. The presence of Hira Island enhances the diffraction of tsunami waves but its contribution to the extreme run-up height is marginal.