### Article

## On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the 3-Sphere

The results obtained in this paper are related to the Palis–Pugh problem on the existence of an arc withfinitely or countably many bifurcations which joins two Morse–Smale systems on a closed smooth manifoldMn . Newhouse and Peixoto showed that such an arc joining flows exists for any nand, moreover, it is simple. However, there exist isotopic diffeomorphisms which cannot be joined by a simple arc. Forn=1, this is related to the presence of the Poincar´ erotationnumber, and forn=2, to the possible existence of periodic points of different periods and heteroclinic orbits. In this paper, for the dimensionn=3, a new obstruction to the existence of a simple arc is revealed, which is related to the wild embedding of all separatrices of saddle points. Necessary and sufficient conditions for a Morse–Smale diffeomorphism on the 3-sphere without heteroclinic intersections to be joined by a simple arc with a“source-sink”diffeomorphism are also found.

Topological classification of even the simplest Morse-Smale diffeomorphisms on 3-manifolds does not fit into the concept of singling out a skeleton consisting of stable and unstable manifolds of periodic orbits. The reason for this lies primarily in the possible ``wild'' behaviour of separatrices of saddle points. Another difference between Morse-Smale diffeomorphisms in dimension 3 from their surface analogues lies in the variety of heteroclinic intersections: a connected component of such an intersection may be not only a point as in the two-dimensional case, but also a curve, compact or non-compact. The problem of a topological classification of Morse-Smale cascades on 3-manifolds either without heteroclinic points (gradient-like cascades) or without heteroclinic curves was solved in a series of papers from 2000 to 2006 by Ch. Bonatti, V. Grines, F. Laudenbach, V. Medvedev, E. Pecou, O. Pochinka. The present paper is devoted to a complete topological classification of the set $MS(M^3)$ of orientation preserving Morse-Smale diffeomorphisms $f$ given on smooth closed orientable 3-manifolds $M^3$. A complete topological invariant for a diffeomorphism $f\in MS(M^3)$ is an equivalent class of its scheme $S_f$, which contains an information on a periodic date and a topology of embedding of two-dimensional invariant manifolds of the saddle periodic points of $f$ into the ambient manifold.

Given a manifold N and a number m, we study the following question: is the set of isotopy classes of embeddings N → Sm finite? In case when the manifold N is a sphere the answer was given by A. Haefliger in 1966. In case when the manifold N is a disjoint union of spheres the answer was given by D. Crowley, S. Ferry and the author in 2011. We consider the next natural case when N is a product of two spheres. In the following theorem, FCS(i, j) ⊂ ℤ2 is a specific set depending only on the parity of i and j which is defined in the paper. Theorem. Assume that m > 2p + q + 2 and m < p + 3q/2 + 2. Then the set of isotopy classes of C1-smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4, or there exists a point (x, y) in the set FCS(m - p - q, m - q) such that (m - p - q - 2)x + (m - q - 2)y = m - 3. Our approach is based on a group structure on the set of embeddings and a new exact sequence, which in some sense reduces the classification of embeddings Sp × Sq→ Sm to the classification of embeddings Sp+q {square cup} Sq → Sm and Dp × Sq → Sm. The latter classification problems are reduced to homotopy ones, which are solved rationally. © 2015 World Scientific Publishing Company.

We prove that simplest Morse-Smale systems can have locally flat and wildly embedded separatrices of saddle periodic point.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.