Глава
Big data visualization as an auxiliary tool in designing a distribution network of a company
В книге
Full texts of third international conference on data analytics are presented.
Приведено описание программного обеспечения - электронного атласа по океанографии. Данный продукт содержит набор океанологических данных, рассчитанных на основе международных гидрологических источников (GDEM и WOA), и программу визуализации, извлечения и доступа к этим данным. Настоящий атлас востребован и является полезным инструментом как при экспресс-оценках предельных параметров длинных внутренних гравитационных волн в любой акватории Мирового океана, так и при подготовке входных данных для численных моделей. Приведено описание пользовательского интерфейса, предоставляемой функциональности и рассмотрены основные режимы работы.
The practical relevance of process mining is increasing as more and more event data become available. Process mining techniques aim to discover, monitor and improve real processes by extracting knowledge from event logs. The two most prominent process mining tasks are: (i) process discovery: learning a process model from example behavior recorded in an event log, and (ii) conformance checking: diagnosing and quantifying discrepancies between observed behavior and modeled behavior. The increasing volume of event data provides both opportunities and challenges for process mining. Existing process mining techniques have problems dealing with large event logs referring to many different activities. Therefore, we propose a generic approach to decompose process mining problems. The decomposition approach is generic and can be combined with different existing process discovery and conformance checking techniques. It is possible to split computationally challenging process mining problems into many smaller problems that can be analyzed easily and whose results can be combined into solutions for the original problems.
Pattern structures, an extension of FCA to data with complex descriptions, propose an alternative to conceptual scaling (binarization) by giving direct way to knowledge discovery in complex data such as logical formulas, graphs, strings, tuples of numerical intervals, etc. Whereas the approach to classification with pattern structures based on preceding generation of classifiers can lead to double exponent complexity, the combination of lazy evaluation with projection approximations of initial data, randomization and parallelization, results in reduction of algorithmic complexity to low degree polynomial, and thus is feasible for big data.
The proceedings of the 11th International Conference on Service-Oriented Computing (ICSOC 2013), held in Berlin, Germany, December 2–5, 2013, contain high-quality research papers that represent the latest results, ideas, and positions in the field of service-oriented computing. Since the first meeting more than ten years ago, ICSOC has grown to become the premier international forum for academics, industry researchers, and practitioners to share, report, and discuss their ground-breaking work. ICSOC 2013 continued along this tradition, in particular focusing on emerging trends at the intersection between service-oriented, cloud computing, and big data.
В статье выполнен анализ перспектив использования технологии «больших данных» (Big Data) в юриспруденции. Обосновывается позиция, что «большие данные» должны использоваться как для объяснения каких-либо явлений, так и для прогнозирования последствий. Автором описаны проблемы, возникающие при применении Big Data в юридических исследованиях. Указанные проблемы могут иметь технический (доступ к данным, технические возможности, верификация данных) и содержательный характер (интерпретация полученных данных и корреляций). Сделан вывод о необходимости активизации исследований с применением «больших данных» с учетом описанных ограничений.