Глава
The fuzzy representation of prior information for separating outliers in statistical experiments.
В книге

Статья рассматривает теоретические предпосылки построения оптимальной иерархической структуры системы мониторинга критически важных параметров продовольственной безопасности России на основе применения теории нечетких множеств.
The definition of a phoneme as a fuzzy set of minimal speech units from the model database is proposed. On the basis of this definition and the Kullback-Leibler minimum information discrimination principle the novel phoneme recognition algorithm has been developed as an enhancement of the phonetic decoding method. The experimental results in the problems of isolated vowels recognition and word recognition in Russian are presented. It is shown that the proposed method is characterized by the increase of recognition accuracy and reliability in comparison with the phonetic decoding method
Soft Computing (SC) is a consortium of fuzzy logic (FL), neurocomputing (NC), evolutionary computing (EC), probabilistic computing (PC), chaotic computing (CC) and parts of machine learning theory (ML). SC is the foundation for computational intelligence and is leading to the development of numerous hybrid intelligent information, control and decision-making systems. The methodology of computing with words (CW) is an important event in the evolution of cognitive science, natural language processing, artificial intelligence, and different existing scientific theories. This is because CW can enrich the existing scientific theories and the above-mentioned science fields giving them the capability of using natural languages to operate on perception-based information, not only measurement-based information. Indeed in many real-world problems in natural sciences as well as in industrial engineering, economics, and business, often there is a need to deal with both perception and measurement based information. In the case of perception based information, the available information is not precise enough to justify the use of numbers. Such information is usually described in natural languages rather than in strict (idealized) mathematical expressions. So a strong need has appeared for a new approach, theory and technology for the development of knowledge representation, computing, and reasoning tools that allow creation of systems with high MIQ. The sessions of the ICSCCW-2011 will focus on the development and application of Soft Computing technology and computing with words paradigm in system analysis, decision and control.
This volume contains papers presented at the 13th International Conference on Rough Sets, Fuzzy Sets and Granular Computing (RSFDGrC) held during June 25–27, 2011, at the National Research University Higher School of Economics (NRU HSE) in Moscow, Russia. RSFDGrC is a series of scientific events spanning the last 15 years. It investigates the meeting points among the four major disciplines outlined in its title, with respect to both foundations and applications. In 2011, RSFDGrC was co-organized with the 4th International Conference on Pattern Recognition and Machine Intelligence (PReMI), providing a great opportunity for multi-faceted interaction between scientists and practitioners. There were 83 paper submissions from over 20 countries. Each submission was reviewed by at least three Chairs or PC members.We accepted 34 regular papers (41%). In order to stimulate the exchange of research ideas, we also accepted 15 short papers. All 49 papers are distributed among 10 thematic sections of this volume. The conference program featured five invited talks given by Jiawei Han, Vladik Kreinovich, Guoyin Wang, Radim Belohlavek, and C.A. Murthy, as well as two tutorials given by Marcin Szczuka and Richard Jensen. Their corresponding papers and abstracts are gathered in the first two sections of this volume.