«Каждая статья на NeurIPS — значительный результат»
Сотрудники факультета компьютерных наук НИУ ВШЭ представят 12 своих работ на 37-й конференции NeurIPS. Conference and Workshop on Neural Information Processing Systems — одно из самых значительных событий в сфере искусственного интеллекта и машинного обучения. В этом году она пройдет с 10 по 16 декабря в Новом Орлеане (США).
В 2023 году рецензенты NeurIPS получили на рассмотрение свыше 13 тысяч статей, из которых менее 4 тысяч были отобраны для представления на конференции. Среди них оказались 12 работ исследователей ФКН, в том числе от Центра искусственного интеллекта НИУ ВШЭ.
Полный список статей ФКН на NeurIPS
Статья “Entropic Neural Optimal Transport via Diffusion Processes”, подготовленная при участии профессора-исследователя Дмитрия Ветрова, станет одним из 77 избранных докладов, которые будут представлены в рамках конференции.
Алексей Наумов
«Каждая статья на NeurIPS считается значительным результатом, к которому стремятся научные коллективы по всему миру. Итогом работы нашего факультета стали 12 статей — это повод для вполне уместной гордости. Такая высокая оценка нашей работы — это подтверждение высочайшего уровня исследований, проводимых сотрудниками ФКН. Среди тем статей в этом году — большие языковые модели, обучение с подкреплением, оптимизация и многие другие актуальные научные вопросы», — отметил заведующий Международной лабораторией стохастических алгоритмов и анализа многомерных данных Алексей Наумов.
Дарина Двинских, доцент департамента больших данных и информационного поиска ФКН, и Ильдус Садртдинов, стажер-исследователь Центра глубинного обучения и байесовских методов ФКН, рассказали о своих научных работах.
Дарина Двинских
— Мы рассматривали задачу минимизации негладкой стохастической функции при предположении, что вместо градиентной информации доступ имеется только к реализациям значений целевой функции, возможно зашумленным. Основной мотивацией для рассмотрения такого безградиентного оракула служат различные приложения в медицине, биологии и физике, где целевая функция может быть вычислена лишь посредством численного моделирования или в результате реального эксперимента, что делает невозможным использование автоматического дифференцирования.
В статье мы предложили алгоритм, оптимальный по оракульной сложности, итерационной сложности и максимальному уровню допустимого шума (возможно, состязательного). Новый алгоритм сходится при менее ограничительных предположениях, чем существующий оптимальный алгоритм. Поэтому предложенный алгоритм может быть применим к более широкому классу задач, в которых шум может иметь тяжелые хвосты.
Ильдус Садртдинов
— В нашей статье мы исследуем, как наиболее эффективно ансамблировать нейронные сети в постановке обучения с переносом знаний (transfer learning). Сложность задачи состоит в том, что обычно доступна только одна предобученная модель, и нейронные сети, которые мы дообучаем из нее, выдают похожие предсказания. Как следствие, их ансамбль имеет не очень высокое качество.
В работе мы показываем, что существующие методы ансамблирования не очень подходят к постановке обучения с переносом знаний. Мы предлагаем нашу модификацию одного из методов, которая лучше соответствует специфике постановки. Попутно мы разрабатываем дополнительную интуицию, как устроен ландшафт функции потерь, когда мы дообучаем предобученную модель на новые данные.
Вам также может быть интересно:
«Можно что-то сделать? Или меня отчислят?»: ИИ-помощники в образовании
Искусственный интеллект может значительно облегчить жизнь студентов и преподавателей университетов. Например, он способен автоматизировать некоторые учебные процессы, а также составить прогноз возможностей трудоустройства выпускников.
В НИУ ВШЭ разработан инструмент для контроля ИИ-технологий в медицине
Группа исследователей из Центра искусственного интеллекта НИУ ВШЭ разработала индекс для определения уровня этичности систем искусственного интеллекта (ИИ) в медицине. Инструмент предназначен для минимизации потенциальных рисков, обеспечения безопасной разработки и внедрения ИИ-технологий в медицинскую практику.
Драйвер прогресса и статья доходов: роль университетов в трансфере технологий
В современном мире необходим эффективный трансфер социально-экономических и гуманитарных знаний в реальный сектор экономики и госуправление. Решающую роль в этом играют университеты. У них есть возможность объединять различные коллективы и в партнерстве с государством и бизнесом разрабатывать и совершенствовать передовые технологии.
ИНФОТЕХ-2024: «понять перспективы и ограничения использования ИИ в образовании»
В конце октября в рамках XVII Тюменского цифрового форума информационных технологий «ИНФОТЕХ-2024» прошел круглый стол «Эксперименты с ИИ в образовании». Эксперты Высшей школы экономики, Московского городского педагогического университета, Уральского федерального университета и Тюменского государственного университета обсудили практический опыт разработки и внедрения технологий ИИ в образовательный процесс, обозначили основные вызовы, связанные с быстрым развитием образовательных решений на базе ИИ.
Анализ генетической информации поможет избежать осложнений после инфаркта
Исследователи из НИУ ВШЭ разработали модель машинного обучения, которая предсказывает риск развития осложнений у пациентов, перенесших инфаркт миокарда. В модели впервые учли генетические данные, что позволило точнее оценить риск долгосрочных осложнений. Исследование опубликовано в журнале Frontiers in Medicine.
Fall into ML 2024: взгляд в будущее машинного обучения
25–26 октября в Москве состоялась конференция Fall into ML, организованная Институтом искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ совместно с Центром ИИ при поддержке титульного партнера — Сбера. На протяжении двух дней ведущие специалисты в области искусственного интеллекта обсуждали перспективы развития фундаментальных технологий ИИ.
ВШЭ и «Яндекс» представили доклад об интеграции искусственного интеллекта в высшее образование
Высшая школа экономики и «Яндекс Образование» подготовили совместный доклад «Искусственный интеллект в образовании». В нем проанализированы ведущие мировые практики, раскрывающие потенциал технологий искусственного интеллекта (ИИ) в образовательной сфере. Доклад представляет собой карту с кейсами университетов разных стран, уже сегодня применяющих ИИ. Цель проекта — помочь российским вузам внедрять ИИ, опираясь на опыт других университетов.
Практика лицензирования разработок НИУ ВШЭ отмечена премией в области корпоративных инноваций GIA
На церемонии вручения премии GIA совместный проект Центра искусственного интеллекта НИУ ВШЭ и АО «Новое сервисное бюро» получил награду в номинации «Трансфер технологий». Это стало плодом интенсивной работы университетского Центра трансфера технологий и научных сотрудников вместе с индустриальным партнером.
Онлайн-юрист, чат-ассистент и аватар профессора: как ученые Вышки применяют ИИ-технологии
Молодые ученые Вышки представили собственные проекты на Объединенном научном семинаре стратегического проекта «ИИ-технологии для человека» (реализуется в рамках программы «Приоритет-2030»). Решения, предложенные исследователями на базе ИИ-алгоритмов, будут полезны для развития гостиничного бизнеса, выявления манипуляций с эмпирическими данными в научных статьях, автоматизации создания юридических документов, а также во многих других сферах деятельности.
Эксперты НИУ ВШЭ исследовали, как ведется подготовка специалистов в области ИИ
Институт статистических исследований и экономики знаний НИУ ВШЭ представил доклад, подготовленный на основе результатов специализированного обследования образовательных организаций высшего образования. Целью впервые проведенной работы стало выявление масштабов и условий обучения технологиям искусственного интеллекта в рамках образовательных программ высшего образования и дополнительных профессиональных программ в вузовском секторе.