«Нейросети показывают, какие качества действительно делают людей уникальными»
Онлайн-кампус НИУ ВШЭ запустил курс «Прикладные нейросети» на портале «Открытое образование». Теперь разобраться в том, как применять возможности искусственного интеллекта на практике, может любой желающий.
Слушатели курса изучают так называемые предобученные модели. Чтобы работать с ними, не нужно дополнительных знаний или инструментов. Подробнее о том, как устроена программа, кому она подходит и почему тренд на нейросети с нами надолго, рассказал автор и преподаватель курса, приглашенный преподаватель департамента больших данных и информационного поиска ФКН ВШЭ Даниил Косакин.
— Что такое предобученные нейросети? Чем они отличаются от нейросетей, о которых все говорят?
— Классические нейросети обучаются с нуля под одну конкретную задачу. Если поменялась даже небольшая деталь, значит, всё, нужно полное переобучение. Предобученные нейросети уже изначально много знают в определенной области, их гораздо легче дообучить под какую-то задачу, ведь основная информация у них уже есть.
Даниил Косакин
Попробую объяснить на примере. Представьте, что вы решили приготовить карри, а раньше до этого вообще ничего не готовили. Но вы готовы тратить дни, недели или даже месяцы, чтобы научиться, — в итоге вы мастерски готовите карри. Но если вас попросить испечь пирог, ваши знания вам не сильно помогут, и учиться придется почти с нуля. А теперь представьте, что такое же задание получил опытный повар. Да, возможно, он никогда не готовил карри, но понимает, как работать с огнем, вкусом и специями. Ему освоить новое блюдо уже значительно проще.
— Кому будет интересен курс? В решении каких практических задач он поможет уже сейчас?
— В первую очередь курс рассчитан на аудиторию, которая хотя бы что-то слышала про нейросети — какие они классные и как много умеют. Но эти люди пока не решились подойти к ИИ ближе, ведь все это кажется каким-то страшным и вообще только для айтишников. Задача курса — эти предубеждения развеять. Вообще-то, применять предобученные нейросети довольно просто.
Такие сети отлично справляются с автоматизацией всяких рутинных процессов. Нужно проанализировать тысячи отзывов клиентов и определить основные запросы? Подключаем языковую модель, она быстро и точно выяснит, что людям нравится в продукте, а что нужно доработать. Расшифровать интервью? Окей, берем модель Speech2Text из открытого доступа. Найти на сотнях фотографий определенный объект? Модели классификации изображений сделают это за вас.
Скорости развития нейросетей фантастические. Еще лет пять назад для каждой из этих задач нужно было либо много времени и отдельная команда инженеров, либо еще больше времени и много рук. Сейчас уже готовые к использованию модели находятся в открытом доступе и их можно установить на личный компьютер.
Узнать больше о курсе и записаться можно здесь.
— Если студент вообще не из IT-сферы, будет ли ему все понятно? Нужны ли дополнительные знания и программы для освоения курса?
— Курс как раз рассчитан на неайтишную аудиторию. Теоретическая часть вообще не требует никаких знаний из области IT — она дает концептуальное представление о том, как работают и какие задачи решают разные нейросети. Чтобы выполнять практические задания, нужно владеть основами языка Python, чтобы понимать, как технически подгружаются и используются модели. Достаточно базовых знаний о переменных, циклах и простых питоновских функциях — остальное можно схватить в процессе.
— Какие практические задания будут на курсе? Чему научится студент?
— Обязательных заданий на курсе нет, но мы подготовили набор ноутбуков, в которых максимально подробно и понятно расписали процесс запуска всех моделей. На занятиях можно подробно разобраться с принципом и особенностями работы этих моделей и узнать, что и как именно происходит в ноутбуке, а вне занятий — потренироваться самостоятельно и попробовать применить эти модели для собственных кейсов.
Рассчитываем, что каждая неделя будет посвящена определенному виду контента (как нейросеть работает с текстом, звуком и изображениями). Студент изучит особенности обработки данных и узнает, для каких задач может быть полезно машинное обучение, а потом на конкретных примерах научится подготавливать данные и запускать модель для их обработки.
— Какие задачи нейросети уже сейчас точно могут взять на себя?
— Как правило, это рутинные задачи, которые понятно сформулированы, у них есть точный порядок действий, а креативность и инициативность не нужны. Проще говоря, если можно за пять минут объяснить человеку, который с этим раньше не работал, что надо делать, скорее всего, с этим справится и нейросеть.
Это инструмент, который может освободить наше время от лишней рутины, чтобы сосредоточиться на действительно интересных и творческих задачах в работе.
— Что нужно уметь, чтобы в ближайшем будущем твое рабочее место не забрала нейросеть?
— Как мне кажется, главное — быть инициативными, любопытными и креативными. Инициативность в принятии непростых решений — та вещь, которую очень сложно доверить модели, хотя бы потому, что она не может нести ответственность за свои решения.
Любопытство и креативность побуждают выходить за рамки привычного, пробовать новое, ошибаться, но продолжать двигаться вперед. Модели от этого пока далеки — они замкнуты в пространстве данных, на которых обучались, и не умеют рисковать и экспериментировать. Можно сказать, что нейросети показывают, какие именно качества делают нас, людей, действительно уникальными.
Больше о работе с нейросетями и применении искусственного интеллекта — на портале Вышки онлайн, посвященном ИИ.
Вам также может быть интересно:
«Можно что-то сделать? Или меня отчислят?»: ИИ-помощники в образовании
Искусственный интеллект может значительно облегчить жизнь студентов и преподавателей университетов. Например, он способен автоматизировать некоторые учебные процессы, а также составить прогноз возможностей трудоустройства выпускников.
В НИУ ВШЭ разработан инструмент для контроля ИИ-технологий в медицине
Группа исследователей из Центра искусственного интеллекта НИУ ВШЭ разработала индекс для определения уровня этичности систем искусственного интеллекта (ИИ) в медицине. Инструмент предназначен для минимизации потенциальных рисков, обеспечения безопасной разработки и внедрения ИИ-технологий в медицинскую практику.
Драйвер прогресса и статья доходов: роль университетов в трансфере технологий
В современном мире необходим эффективный трансфер социально-экономических и гуманитарных знаний в реальный сектор экономики и госуправление. Решающую роль в этом играют университеты. У них есть возможность объединять различные коллективы и в партнерстве с государством и бизнесом разрабатывать и совершенствовать передовые технологии.
ИНФОТЕХ-2024: «понять перспективы и ограничения использования ИИ в образовании»
В конце октября в рамках XVII Тюменского цифрового форума информационных технологий «ИНФОТЕХ-2024» прошел круглый стол «Эксперименты с ИИ в образовании». Эксперты Высшей школы экономики, Московского городского педагогического университета, Уральского федерального университета и Тюменского государственного университета обсудили практический опыт разработки и внедрения технологий ИИ в образовательный процесс, обозначили основные вызовы, связанные с быстрым развитием образовательных решений на базе ИИ.
Fall into ML 2024: взгляд в будущее машинного обучения
25–26 октября в Москве состоялась конференция Fall into ML, организованная Институтом искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ совместно с Центром ИИ при поддержке титульного партнера — Сбера. На протяжении двух дней ведущие специалисты в области искусственного интеллекта обсуждали перспективы развития фундаментальных технологий ИИ.
ВШЭ и «Яндекс» представили доклад об интеграции искусственного интеллекта в высшее образование
Высшая школа экономики и «Яндекс Образование» подготовили совместный доклад «Искусственный интеллект в образовании». В нем проанализированы ведущие мировые практики, раскрывающие потенциал технологий искусственного интеллекта (ИИ) в образовательной сфере. Доклад представляет собой карту с кейсами университетов разных стран, уже сегодня применяющих ИИ. Цель проекта — помочь российским вузам внедрять ИИ, опираясь на опыт других университетов.
Практика лицензирования разработок НИУ ВШЭ отмечена премией в области корпоративных инноваций GIA
На церемонии вручения премии GIA совместный проект Центра искусственного интеллекта НИУ ВШЭ и АО «Новое сервисное бюро» получил награду в номинации «Трансфер технологий». Это стало плодом интенсивной работы университетского Центра трансфера технологий и научных сотрудников вместе с индустриальным партнером.
Онлайн-юрист, чат-ассистент и аватар профессора: как ученые Вышки применяют ИИ-технологии
Молодые ученые Вышки представили собственные проекты на Объединенном научном семинаре стратегического проекта «ИИ-технологии для человека» (реализуется в рамках программы «Приоритет-2030»). Решения, предложенные исследователями на базе ИИ-алгоритмов, будут полезны для развития гостиничного бизнеса, выявления манипуляций с эмпирическими данными в научных статьях, автоматизации создания юридических документов, а также во многих других сферах деятельности.
Эксперты НИУ ВШЭ исследовали, как ведется подготовка специалистов в области ИИ
Институт статистических исследований и экономики знаний НИУ ВШЭ представил доклад, подготовленный на основе результатов специализированного обследования образовательных организаций высшего образования. Целью впервые проведенной работы стало выявление масштабов и условий обучения технологиям искусственного интеллекта в рамках образовательных программ высшего образования и дополнительных профессиональных программ в вузовском секторе.
«Нам удалось провести настоящий хакатон, когда нет заранее понятного пайплайна, как получить решение»
С 13 по 20 октября в НИУ ВШЭ прошел хакатон “HSE AI Assistant Hack: Python”, организованный факультетом компьютерных наук и Центром искусственного интеллекта ВШЭ. За призовые места боролись 89 студенческих команд из ведущих вузов страны.