### Working paper

## Desingularization of quiver Grassmannians for Dynkin quivers

A desingularization of arbitrary quiver Grassmannians for representations of Dynkin quivers is constructed in terms of quiver Grassmannians for an algebra derived equivalent to the Auslander algebra of the quiver.

We study geometric and combinatorial properties of the degenerate flag varieties of type A. These varieties are acted upon by the automorphism group of a certain representation of a type A quiver, containing a maximal torus T . Using the group action, we describe the moment graphs, encoding the zero- and one-dimensional T -orbits. We also study the smooth and singular loci of the degenerate flag varieties. We show that the Euler characteristic of the smooth locus is equal to the large Schröder number and the Poincaré polynomial is given by a natural statistics counting the number of diagonal steps in a Schröder path. As an application we obtain a new combinatorial description of the large and small Schröder numbers and their q-analogues.

A desingularization of arbitrary quiver Grassmannians for representations of Dynkin quivers is constructed in terms of quiver Grassmannians for an algebra derived equivalent to the Auslander algebra of the quiver.

Quiver Grassmannians are varieties parametrizing subrepresentations of a quiver representation. It is observed that certain quiver Grassmannians for type A quivers are isomorphic to the degenerate flag varieties investigated earlier by the second named author. This leads to the consideration of a class of Grassmannians of subrepresentations of the direct sum of a projective and an injective representation of a Dynkin quiver. It is proven that these are (typically singular) irreducible normal local complete intersection varieties, which admit a group action with finitely many orbits, and a cellular decomposition. For type A quivers explicit formulas for the Euler characteristic (the median Genocchi numbers) and the Poincare polynomials are derived.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.