• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Working paper

Modular Cauchy kernel corresponding to the Hecke curve

arxiv.org. math. Cornell University, 2018. No. 1802.03299.
In this paper we construct the modular Cauchy kernel $\Xi_N(z_1, z_2)$, i.e. the modular invariant function of two variables, $(z_1, z_2) \in \mathbb{H} \times \mathbb{H}$, with the first order pole on the curve $$D_N=\left\{(z_1, z_2) \in \mathbb{H} \times \mathbb{H}|~ z_2=\gamma z_1, ~\gamma \in \Gamma_0(N)  \right\}.$$    The  function $\Xi_N(z_1, z_2)$ is used in two cases and for two different purposes. Firstly,  we prove generalization of the Zagier theorem (\cite{La}, \cite{Za3}) for the Hecke subgroups $\Gamma_0(N)$ of genus $g>0$. Namely, we obtain a kind of ``kernel function'' for the Hecke operator $T_N(m)$ on the space of the weight 2 cusp forms for $\Gamma_0(N)$, which is the analogue of the Zagier series $\omega_{m, N}(z_1,\bar{z_2}, 2)$. Secondly, we consider an elementary proof of the formula for the infinite Borcherds product of the difference of two normalized Hauptmoduls, ~$J_{\Gamma_0(N)}(z_1)-J_{\Gamma_0(N)}(z_2)$, for genus zero congruence subgroup $\Gamma_0(N)$.