• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Working paper

A complete topological classification of Morse-Smale diffeomorphisms on surfaces: a kind of kneading theory in dimension two

Pochinka O., Grines V., Van Strien S.
In this paper we give a complete topological classification of orientation preserving Morse-Smale diffeomorphisms on orientable closed surfaces. For MS diffeomorphisms with relatively simple behaviour it was known that such a classification can be given through a directed graph, a three-colour directed graph or by a certain topological object, called a scheme. Here we will assign to {any} MS surface diffeomorphism a finite amount of data which completely determines its topological conjugacy class. Moreover, we show that associated to any abstract version of this data, there exists a unique conjugacy class of MS orientation preserving diffeomorphisms (on some orientation preserving surface). As a corollary we obtain a different proof that nearby MS diffeomorphisms are topologically conjugate.