Working paper
Graphical Interpretations of Rank Conditions for Identification of Linear Gaussian Models
In the modern Web, it is common for an active person to have several profiles in different online social networks. As new general-purpose and niche social network services arise every year, the problem of social data integration will likely remain actual in the nearest future. Discovering multiple profiles of a single person across different social networks allows to merge all user's contacts from different social services or compose more complete social graph that is helpful in many social-powered applications. In this paper we propose a new approach for user profile matching based on Conditional Random Fields that extensively combines usage of profile attributes and social linkage. It is extremely suitable for cases when profile data is poor, incomplete or hidden due to privacy settings. Evaluation on Twitter and Facebook sample datasets showed that our solution significatnly outperforms common attribute-based approach and is able to find matches that are not discoverable by using only profile information. We also demonstrate the importance of social links for identity resolution task and show that certain profiles can be matched based only on social relationships between OSN users.
The Shape Boltzmann Machine (SBM) and its multilabel version MSBM have been recently introduced as deep generative models that capture the variations of an object shape. While being more flexible MSBM requires datasets with labeled parts of the objects for training. In the paper we present an algorithm for training MSBM using binary masks of objects and the seeds which approximately correspond to the locations of objects parts. The latter can be obtained from part-based detectors in an unsupervised manner. We derive a latent variable model and an EM-like training procedure for adjusting the weights of MSBM using a deep learning framework. We show that the model trained by our method outperforms SBM in the tasks related to binary shapes and is very close to the original MSBM in terms of quality of multilabel shapes.
The aim of this article is to consider the consolidation of social capital in two Russian state organizations under the context of different generational cohorts, namely, Baby Boomers, Generation X and Y, and the features of their organizational behavior. Consolidation of social capital is based on the integrated semantic area that could include the estimation of organizational culture, employees’ commitment to company goals and values as well as strong organizational identification. Extensively, consolidation of social capital is determined by organizational, generational and subcultural peculiarities of staff. Altogether, 250 employees participated in this study and filled in three questionnaires to estimate organizational culture, commitment and four dimensions of identification. The data collected in two sample groups (90 and 160 people) in St. Petersburg and Petrozavodsk respectively demonstrated the significant differences among generational cohorts both in the organization and between them. The most hardships in the consolidation of social capital undergo generation X whose formative years had been within Perestroika span and strong social changes in Russia. All that is reflected at their level of organizational identification and contradictions while perceiving current and preferred organizational cultures.
In this paper we consider the Shape Boltzmann Machine(SBM) and its multi-label version MSBM. We present an algorithm for training MSBM using only binary masks of objects and the seeds which approximately correspond to the locations of objects parts.
We present a new click model for processing click logs and predicting relevance and appeal for query–document pairs in search results. Our model is a simplified version of the task-centric click model but outperforms it in an experimental comparison.
Structured-output learning is a challenging problem; particularly so because of the difficulty in obtaining large datasets of fully labelled instances for training. In this paper we try to overcome this difficulty by presenting a multi-utility learning framework for structured prediction that can learn from training instances with different forms of supervision. We propose a unified technique for inferring the loss functions most suitable for quantifying the consistency of solutions with the given weak annotation. We demonstrate the effectiveness of our framework on the challenging semantic image segmentation problem for which a wide variety of annotations can be used. For instance, the popular training datasets for semantic segmentation are composed of images with hard-to-generate full pixel labellings, as well as images with easy-to-obtain weak annotations, such as bounding boxes around objects, or image-level labels that specify which object categories are present in an image. Experimental evaluation shows that the use of annotation-specific loss functions dramatically improves segmentation accuracy compared to the baseline system where only one type of weak annotation is used.
The paper examines the structure, governance, and balance sheets of state-controlled banks in Russia, which accounted for over 55 percent of the total assets in the country's banking system in early 2012. The author offers a credible estimate of the size of the country's state banking sector by including banks that are indirectly owned by public organizations. Contrary to some predictions based on the theoretical literature on economic transition, he explains the relatively high profitability and efficiency of Russian state-controlled banks by pointing to their competitive position in such functions as acquisition and disposal of assets on behalf of the government. Also suggested in the paper is a different way of looking at market concentration in Russia (by consolidating the market shares of core state-controlled banks), which produces a picture of a more concentrated market than officially reported. Lastly, one of the author's interesting conclusions is that China provides a better benchmark than the formerly centrally planned economies of Central and Eastern Europe by which to assess the viability of state ownership of banks in Russia and to evaluate the country's banking sector.
The paper examines the principles for the supervision of financial conglomerates proposed by BCBS in the consultative document published in December 2011. Moreover, the article proposes a number of suggestions worked out by the authors within the HSE research team.