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GRAPHICAL INTERPRETATIONS OF RANK CONDITIONS

FOR IDENTIFICATION OF LINEAR GAUSSIAN MODELS

NIKOLAY AREFIEV

Abstract. The literature on graphical models and the literature on identification pursue similar goals,

but do not use entirely each other’s results, because represent them in different languages. To ease the

communication between these fields, I translate the most important theorems on identification of linear

Gaussian Simultaneous Equations Models (SEMs) and Structural Vector Autoregressions (SVARs) into the

language of graphical models. I propose graphical interpretations of the rank conditions for identification

of SEMs, of the rank condition of Rubio-Ramirez et al (2010) for identification of SVARs with linear and

nonlinear restrictions, and of the theory of partial identification for SVARs.

Keywords: graphical models, identification, rank condition.

JEL codes: C30

1. Introduction

The probabilistic graphical approach has a lot of successful applications in the computer science, medicine

and biology (Koller (2009); Pearl (2009)), and it gains popularity in econometrics (see Ahelegbey et al., 2014;

Bryant and Bessler, 2011; Demiralp et al., 2014; Fragetta and Melina, 2013; Hoover, 2005; Kwon and Bessler,

2011; Oxley et al., 2009; Phiromswad, 2014; Reale and Wilson, 2001; Richardson and Spirtes, 1999; Wilson

and Reale, 2008, and many others). However, the literature on graphical models and the econometric

literature on identification use different languages to represent the results: the literature on graphical model

usually formulates the theorems in terms of causal diagrams (Brito and Pearl (2002b); Tian (2005); Chen and

Pearl (2014)), and the econometric literature represents the results in terms of matrix algebra (for example,

see Greene, 2012; Rubio-Ramı́rez et al., 2010; Christiano et al., 1999). These branches of research, however,
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do not substitute for each other. The econometric literature is better developed for cyclical models. The

literature on graphical identification has more results for identification of models with intricate assumptions

about the independence of structural shocks (Chen and Pearl (2014)), and provides tools for testing the

identification assumptions. It would be desirable, therefore, to represent the results from these branches

using a common language, and in this way to ease the communication between the researchers.

This paper fills this gap and translates the most important results known about identification in the

econometrics into the language of graphical models. I propose graphical identification of the rank condition

for identification of simultaneous equations models (SEMs) (for example, see Greene (2012)), the condition

of Rubio-Ramı́rez, Waggoner and Zha for identification of SVARs (Rubio-Ramı́rez et al. (2010)), and of the

theory of partial identification (as reviewed in Christiano et al. (1999)).

2. Graphical Interpretation of the Rank Condition for SEMs

Consider the following Simultaneous Equations Model (SEM):

(1) AY = BZ + E

where A and B are matrices of parameters, Y is an n× 1 vector of the centralized endogenous variables, Z

is an m× 1 vector of the centralized exogenous or predetermined variables, and E is an n× 1 vector of the

unobservable Gaussian disturbances uncorrelated with Z, E ∼ N (0,Σ). Most of the paper assumes that

the structural shocks are independent, so the covariance matrix Σ is diagonal. This assumption, however,

is not used in Proposition 1 below, where Σ is assumed to be a symmetric positive definite matrix without

any identifying assumptions imposed. The constant term is omitted in (1) because all variables have been

centralized, so the term is zero. Matrix A is nonsingular, and the matrices of parameters A, B and Σ

are normalized so that for each i = 1, 2, . . . , n : ai,i > 0 and σii = 1, where ai,i and σii are the respective

elements of A and Σ. The variables of vector Z are referred to hereafter as the primary instruments.

Primary instruments may be correlated with each other, but they are all independent of E . I assume

that there are enough observations and that there is a sufficient variance of Z to estimate the conditional

probability distribution function f(Y |Z) generated by (1).

If no identification constraints are imposed on (1), this model is not identified, which means that many

different parameter points (A B) exist, producing the same conditional probability distribution function

f(Y |Z) (see Appendices A.2 and B.1 for a brief review). To identify the model, in this section I consider only
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those identification constraints, which restrict particular parameters to zero. All identification constraints

are summarized by the conditional causal diagram1 defined as follows:

Definition 1 (Conditional and unconditional causal diagrams). A causal diagram is a directed graph, where

the nodes are the random variables of the structural model, and where the edges are defined by the inclusion

restrictions: edge xi → xj is present in the causal diagram if and only if pji 6= 0, where pji is the respective

element of P.

• The conditional causal diagram represents only the edges associated with matrices A and B;

• The unconditional causal diagram represents edges associated with all entries of P.

The literature on causality (Pearl (2009)) presumably works with unconditional causal diagrams, but in

this paper I consider only conditional diagram. Hereafter, I use ‘conditional causal diagram” and “causal

diagram” as synonyms.

Throughout the paper I consider the following example. Assume that the simultaneous equation model

is:

(2)


a12 a12 a13

a22 a22 a23

a32 a32 a13



y1

y2

y3

 =


b11 b12

0 b22

0 0


z1
z2

+


ε1

ε2

ε3

 ,

where coefficients b12, b21 and b32 are constrained to zero, so they are substituted by zeros in (2). The

conditional causal diagram for model (2) is depicted in Figure 1a, and it have been drawn in the following

way. I have five random variables: y1, y2, y3, z1, and z2, so I have drawn five respective vertices. The first

equation in (2) is associated with node y1 in Figure 1a. Since no coefficients in this line are constrained to

zero, each other node is parent of y1 in Figure 1a. The second line is associated with node y2, and since

coefficient b21 is constrained to zero, there is no edge z1 → y2 in Figure 1a, but the other nodes are parents

of y2. Finally, coefficients b31 and b32 are constrained to zero, z1 and z2 are not parents of y3.

If edge yj → yi exists in the conditional causal diagram, then yj is said to be a parent of yi, and yi is

a child of yj . If there is path yj1 → yj2 → · · · → yjN , then yj1 is ancestor of yjN , and yjN is descendant

of yj1 . If there is a path which starts and ends with the same node, this path is called a cycle. If there is

no cycles on the conditional causal diagram, the model is recursive, otherwise it is cyclical. Two paths are

independent if they do not intersect on any node. Each node is interpreted as a path of length 1.

1The conditional causal diagram can be interpreted as a C -component of the full causal diagram, see Tian (2005).
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Figure 1. Conditional causal diagram for model (2) and identification of y3.

z1
y1

y2

y3

z2

z1
y1

y2

y3

z2

a) Conditional causal diagram b) Identification of y3

Model (2) is cyclical, because there are many cycles in the causal diagram in Figure 1a, for example,

y1y2y1. Cyclical models have multiple causal representation. For example, if I change the order of equations

in (2), I get a different causal diagram. Hopefully, the results presented bellow do not depend on the

particular causal representation that I use.

Definition 2 (Primary identifying path). A path in the conditional causal diagram is a primary identifying

path for a parent yj of node yi if it starts with a primary instrument and reaches yj .

Definition 3 (Identified node). Node yi said to be identified by the conditional causal diagram if the

constraints summarized by the conditional causal diagram suffice for the identification of all parameters in

the ith rows of A and B in almost all parameter points.

In empirical studies, where the structural shocks may be not independent and no constraints are imposed

on Σ, the identification of a given parameter is usually verified using the rank condition, which is briefly

reviewed in Appendix A.2. In this section, I propose the following graphical interpretation of this condition:

Proposition 1 (Graphical interpretation of rank condition). Assume that Σ is a symmetric positive definite

matrix, and no identification constraints are imposed Σ.

• If node yi is identified in a given parameter point by the constraints summarized by the conditional

causal diagram, then for each parent of yi there exists an independent primary identifying path in

the conditional causal diagram.

• If for each parent of yi there exists an independent primary identifying path in the conditional causal

diagram, then node yi is identified in almost all parameter points by the constraints, summarized by

the conditional causal diagram.

Proof. See Appendix A. �
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Consider the causal diagram depicted in Figure 1a, and see whether node y3 is identified. This node

has two parents: y1 and y2, so I need 2 independent identifying paths for the identification of y3. These

paths do exist, see Figure 1b. The identifying path for y1 is z1 → y1. By Definition 2, this path starts with

instrument z1 and reaches y1, which is parent of y3. Similarly, the identifying path for y2 is z2 → y2, which

starts with instrument z2 and reaches parent y2. These paths do not intersect on any node, so they are

independent. Therefore, node y3 is identified, which means that all parameters in the third line of (2) and

structural shock ε3 are identified in almost all parameter points.

The causal diagram in Figure 1, however, does not suffice for identification of y1 or y2. Indeed, node y1

has 4 parents, and node y2 has three parents, but only two primary instruments in the whole model are

available. Since this is not possible to draw 3 or 4 independent paths starting with only 2 instruments,

nodes y1 and y2 are not identified.

3. Graphical Identification of Models with Orthogonal Shocks

Assume that the structural shocks are orthogonal, so Σ is diagonal. When the independence assumption

is made, some endogenous variables may possess the same properties as the primary instruments, so they

can produce additional identifying paths and identify additional parameters. I introduce two kinds of

instruments, recursive instruments and respective instruments. A recursive instrument is defined as any

endogenous node, which has been identified using other instruments. Node yj is said to be a respective

instrument for yi if yj is not a descendant of yi.

Definition 4 (Recursive identifying path). In a model with orthogonal structural shocks, a path in the

conditional causal diagram is a recursive identifying path for a parent yj of node yi if it starts with an

identified node and reaches yj .

Definition 5 (Respective identifying path). In a model with orthogonal structural shocks, a path in the

conditional causal diagram is a respective identifying path for a parent yj of node yi if it starts with a

non-descendant of yi and reaches yj .

Proposition 2 below uses Rubio-Ramı́rez et al.’s (2010) sufficient condition for identification to prove that

recursive instruments can be used for identification of structural models in the same manner as primary

instruments. To prove the sufficiency of respective instruments in the same proposition, I use the theory of

partial identification, as reviewed in Christiano et al. (1999).
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Figure 2. Identification under the shock orthogonality assumption.
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a) Identification of y3 b) Identification of y2 c) Identification of y1

Proposition 2 (Recursive condition for identification). Assume that the structural shocks are independent,

so Σ is a positive diagonal matrix. If for each parent of yi in the conditional causal diagram there is an

independent primary, recursive or respective identifying path, then yi is globally identified by the causal

diagram in almost all parameter points.

Proof. Use in Proposition 3 below, and consider the case F(A,B) = (A B) . �

Comparing the recursive condition for identification, as formulated in Proposition 2, with the rank con-

dition formulated in Proposition 1, I note that the recursive condition, on the one hand, requires a shock

independence assumption, but on the other hand, permits the use of recursive and respective instruments

in addition to the primary instruments permitted by Proposition 1.

Consider again model (2), and see which nodes are identified by causal diagram depicted in Figure 1

under assumption of independent structural shocks. As previously, node y3 has two parents, y1 and y2,

with identifying paths z1 → y1 and z2 → y2, so y3 is identified, see Figure 2a. But because of the shock

independence assumption, I can now use y3 as a recursive instrument for identification of other nodes.

Consider node y2, see Figure 2b. The parents of y2 are z2, y1, and y3, so I need three independent

identifying paths for the identification of the second equation. Node z2 creates an identifying path of length

1 for itself, the path starts with z2 in the role of instrument and it reaches z2 in the role of parent. In the

same manner, y3 creates an identifying path for itself, the path starts with y3 in the role of a node, which

has in the previous step been proven to be identified, and reaches y3 in the role of parent of y2. Finally,

the identifying path for y1 is z1y1, so node y2 is also identified. In the same way, it is possible to show that

y1 is also identified, see Figure 2c. Therefore, under the shock orthogonality assumption, the identification

assumptions summarized by the causal diagram depicted in Figure 1a suffice for the full identification of

the structural model.

Using recursive and respective instruments together, I can partially identify new models, which could not

be identified using the results from the theory on partial identification and from the Rubio-Ramı́rez et al.’s
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y1
y2 y3

y4

Figure 3. Causal diagram for example (3).

(2010) theorem when they are applied separately from each other. Consider a model with the following

identification assumptions:

(3) A =

( a11 a12 0 0
a21 a22 0 0
0 a32 a33 a34
0 0 a43 a44

)
B =

( )
4×0

The theory of partial identification does not suffice to identify any equation in this model, because each

node of the causal diagram for this model is part of a causal cycle. In Appendix B.1 I demonstrate why

the Rubio-Ramı́rez et al.’s (2010) Theorem 1 does not suffice to identify any node. Consider, however, the

causal diagram for this model depicted in Figure 3. Node y2 acts as a respective instrument for identification

of y4, and y4 is recursive instrument for identification of y3, so nodes y3 and y4 are identified.

4. Nonlinear Identifying Restrictions for SVAR models

A special case of (1) is the following structural vector autoregression (SVAR) model:

(4) A0Yt =

l∑
i=1

AiYt−i + Et,

where l is the number of lags. This model reduces to (1) using variable substitution A0 ≡ A, [A1 A2 . . . Al] ≡

B, Yt ≡ Y , and
(
Y T
t−1 Y

T
t−2 . . . Y T

t−l
)T ≡ Z.

The literature on SVARs uses not only inclusions and exclusions summarized by the causal diagram, but

also various nonlinear restrictions, such as restrictions imposed on the matrix of long-run impulse-responses

defined by:

(5) IR∞ =

(
A0 −

l∑
i=1

Ai

)−T
,

where [IR∞]ji ≡ irji is the long-run response of yi to εj . Identifying restrictions may require that particular

entries of IR∞ be or be not constrained zero.

To deal with long-run restrictions, I follow Rubio-Ramı́rez et al. (2010), and use parameter transformation

function F(A,B). This transformation takes as inputs the parameters of the structural model A and B,

and produces a matrix that has n rows and an arbitrary number of columns. This transformation must

satisfy the admissibility condition, so for each orthonormal matrix R : F(RA,RB) = RF(A,B), and the

strong regularity condition, so the transformation must be dense. The generalized inclusion and exclusion
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restrictions are imposed directly on the transformation, and require that a particular entry of F(A,B)

be or be not constrained to zero. Without loss of generality, I assume that A is always included into

the transformation, and placed in the front of other parameters, so F(A,B) = (A . . . ). Examples of such

transformations are the transformation of the parameters A and B into matrix (A B), so F (A,B) = (A B),

the transformation into the long-run impulse-responses, F (A,B) = (A IR∞), or a combination of the

previous two transformations, F(A,B) = (A B IR∞).

All inclusions and exclusions in this section are summarized by the identification diagram:

Definition 6 (Identification diagram). The identification diagram for transformation F(A,B) is a directed

graph, where each column fi of F(A,B) produces node fi, and there is edge fi → fj if and only if entry

[F(A,B)]ji is not restricted to zero by the identifying restrictions.

• The nodes associated with columns of A are denoted as the endogenous variables y1, y2, . . . , yn.

• If B is included into the transformation, the nodes associated with columns of B are denoted as the

primary instruments z1, z2, . . . , zm.

• The nodes associated with the other columns are denoted as ζ1, ζ2, . . . , and are treated in the same

way as the primary instruments.

The conditional causal diagram is a special case of the identification diagram, where F(A,B) = (A B).

However, the identification diagram may have more nodes, and it does not necessarily have a causal inter-

pretation.

Proposition 3 generalizes Proposition 2 for identification diagrams.

Proposition 3 (Recursive condition for identification with nonlinear restrictions). Assume that the struc-

tural shocks are independent, so Σ is a positive diagonal matrix. If for each parent of yi in the identification

diagram there is an independent primary, recursive or respective identifying path, then yi is globally identified

by the identification diagram in almost all parameter points.

Proof. See Appendix B. �

The literature on long run identification restrictions starts with Blanchard and Quah’s (1993) paper. As

an application of Proposition 3, in this section I demonstrate how to draw the identification diagram for

their identifying restrictions, and how to apply Proposition 3 to verify that their identifying assumptions

suffice for the full identification. Let Y = (u y)
T

, where u is the unemployment rate, and y is the log

GDP. The structural shocks E =
(
εAD εAS

)T
are interpreted as the aggregate demand and the aggregate
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Table 1. Association between entries irij of transformation F (A,B) in (6) and long run
restrictions in the Blanchard and Quah’s (1993) example.

Structural shock Aggregate Demand shock Aggregate Supply shock
Long run response of unemployment ir11 ir12
Long run response of log GDP ir21 ir22

Figure 4. The identification diagram for the Blanchard and Quah’s (1993) model.
There is reverse causal interpretations of the edges associated with long-run restrictions: edge
LR.y → εAS indicates that the long-run response of y to εAS is not zero. For the chosen association
between the structural shocks and structural equations, node labels (εAD, εAS) are synonyms for
labels (y, u).

LR.u

LR.y

εAD

εAS

supply shocks. I assume that the aggregate demand shock is associated with the equation defining the

unemployment, and the aggregate supply shock is associated with the equation defining the output. This

association is arbitrary, but the conclusions do not depend on a particular assumption about the association

between the shocks and equations that I use.

Consider the transformation that includes matrix A and the long-run impulse-response functions IR∞:

(6) F(A,B) =

(
A IR∞

)
=

a11 a12 ir11 ir12

a21 a22 ir21 ir22

 ,

The association between entries irij of this transformation and the long run restrictions is given in Table 1.

Blanchard and Quah (1993) use the identifying assumption that only the aggregate supply shock affects the

output in the long run (ir21 = 0 and ir22 6= 0). The macroeconomic theory also predicts that the long-run

response of u to εAD is zero ( ir11 = 0), and the response of u to εAS may be negative or zero (ir12 ≤ 0). No

entries of A are restricted to zero. These identification assumptions are summarized by:

(7) F(A,B) =

a11 a12 ? ?

a21 a22 0 ir22


where the question marks indicate that the respective entries are not constrained to zero in the Blanchard

and Quah’s paper, but the macroeconomic theory predicts that they may be zero.

These identification constraints are depicted in the identification diagram in Figure 4. Since the aggregate

demand shock is associated with the equation for u, and the aggregate supply shock is associated with the

equation for y, instead of notation u and y for the respective nodes I use εAD and εAS, which simplifies the
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interpretation of the identification diagram. There is inverse causal interpretation of edges associated with

long-run impulse responses: edge LR.yi → εj is present in the causal diagram if the long-run response of yi

to structural shock εj is not zero. Therefore, edge LR.y → εAS indicates that there is long-run response of y

to εAS, and anti-edge LR.y → εAD indicates that the long-run response of y to the aggregate demand shock is

zero. The dashed edges indicate that no particular assumptions have been made on how the unemployment

responds to the structural shocks in the long run.

By Proposition 3, this model is fully identified whether or not the dashed edges are present in the

identification diagram. For example, if the dashed edges are absent, then the only parent of εAD is εAS , for

which there exists identifying path LR.y → εAS . Since εAD is identified, it becomes recursive instrument

for identification of εAS , so the model is fully identified.

5. A note on estimation technique

If the structural model is fully identified using only primary and recursive instruments and the iden-

tification diagram is the causal diagram, the structural equations can be estimated one at a time, using,

for example, two-stage or three-stage least squares estimator. Consider model (2), and assume that the

structural shocks are orthogonal, so Σ is diagonal. By Proposition 2, this model is fully identified. To

estimate the parameters of this structural model, start with node y3, and estimate the parameters in the

third structural equation and structural shock ε3 using the two- or three-stage least square procedure. The

estimated structural shock ε3 processes all properties required for the instruments, so consider this shock

as a new primary instrument. Using this instrument, I can identify y2 and estimate the second structural

equation, and ε2. Finally, use z1, z2, ε2 and ε3 to identify and estimate the first structural equation and ε1.
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Appendix A. Proof of Proposition 1

A.1. A Lemma. Let Y = {y1, y2, . . . , yn} be the set of nodes in the identification diagram associated

with the endogenous variables, Z = {z1, z2, . . . , zm} be the set of nodes associated with the exogenous or

predetermined variables or nodes ζ1, ζ2, . . . from Definition 6, and X = Y ∪ Z be the set of all nodes. Let

Y1, Y2, and X1 be independent subsets of X satisfying: Y1 ⊂ Y, Y2 ⊂ Y, X1 ⊂ X, Y1∩Y2 = ∅, Y1∩X1 = ∅,

and Y2 ∩ X1 = ∅. Let G be the subgraph of the identification diagram induced by nodes Y1 ∪ Y2 ∪ X1, and

N be the number of independent paths in G starting with nodes in X1 and reaching nodes in Y1. Without

loss of generality, I consider only paths without cycles. For example, if I have path x1x2x1x4, I consider

instead the path, where cycle x1x2x1 is removed, so I consider x1x4.

Consider matrix M obtained from transformation F in the following way: take the rows of matrix F

having the indices of elements of Y1 ∪ Y2, and take the columns of F having the indices of Y2 ∪ X1.

If there is path xj1xj2 . . . xjs in the identification diagram, the set of parameters associated with this path

consists of the following elements of matrix F:
{
fj2j1 , fj3j2 , . . . , fjsjs−1

}
. Therefore, the diagonal elements

of A are not considered as parameters associated with any path. By definition of the identification diagram,

the parameters associated with different paths are not constrained to zero by the identification restrictions.

In the proof of Proposition 1 below I use Leibniz formula for determinant, which expresses the determinant

as a sum over all permutations. Since matrix M may be not square, I consider partial permutations, which do

not necessarily take all rows and all columns of M. Let L be the length of the lengthiest partial permutation

in M such that each element of the permutation is not restricted to zero by the identification constraints.

To gain intuition, consider the following example. Assume that the structural model is:

(8)

 1 a12 0 0 a15 a16
0 1 a23 0 0 0
0 0 1 a34 0 0
0 0 0 1 0 0
0 0 0 a54 1 0
0 0 0 0 0 1

 y1
y2
y3
y4
y5
y6

 =

 b11 b21 0 0
0 0 0 0
0 0 0 0
0 0 b43 0
0 0 0 b54
0 0 0 0

( z1
z2
z3
z4

)
+

 ε1
ε2
ε3
ε4
ε5
ε6

 ,

which causal diagram is depicted in Figure 5a. Consider the following sets of nodes: Y1 = {y2, y5, y6},

Y2 = {y3, y4}, X1 = {z2, z3, z4}. Subgraph G, which by the definition is induced by Y1 ∪ Y2 ∪ X1, is drawn

in Figure 5b. Assume the transformation is: F (A,B) = (A B) . Matrix F is:

P̄ =


1 a12 0 0 a15 a16 −b11 −b21 0 0
0 1 a23 0 0 0 0 0 0 0
0 0 1 a34 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −b43 0
0 0 0 a54 1 0 0 0 0 −b54
0 0 0 0 0 1 0 0 0 0


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a) Causal diagram b) Subgraph G induced by
{y2, y3, y4, y5, y6, z2, z3, z4}

z1

y1

z2

y2 y3 y4
z3

y5
z4

y6

y2

z2

y3 y4
z3

y5 z4 y6

Figure 5. Example of causal diagram and subgraph G

Matrix M takes rows 2, 3, 4, 5, 6, and columns 3, 4, 8, 9, and 10 of matrix F, so I get:

(9) M =


a23 0 0 0 0
1 a34 0 0 0

0 1 0 −b43 0

0 a54 0 0 −b54
0 0 0 0 0


There are two independent paths in G starting with nodes in X1 and reaching Y1, see Figure 5b, they

are z3 → y4 → y3 → y2 and z4 → y5, so N = 2. The sets of parameters associated with these paths

are {−b43, a34, a23} and {−b54}. The lengthiest unconstrained partial permutation in M is underlined in

equation (9), and is [a23 · a34 · (−b43) · (−b54)]. This permutation has four elements, so L = 4. Finally, there

are 2 nodes in set Y2, so |Y2| = 2.

Lemma 1. The length of the lengthiest unconstrained partial permutation in M is equal to the number of

independent paths in G starting with nodes in X1 and reaching Y1 plus the number of nodes in Y2:

L = N + |Y2|

Proof. Step 1. Prove that two paths intersect in G if and only if the parameters associated with these paths

do not pertain to the same partial permutation in M.

Indeed, two paths intersect in G if and only if there exists a node xj ∈ Y1 ∪ Y2 ∪ X1 such that at least

one of the following conditions hold:

(1) There are two incoming edges to node xj associated with two different paths, in which case the

parameters associated with these edges are located in the same row of M.

(2) There are two outgoing edges from xj associated with two different paths, in which case the param-

eters associated with the outgoing edges are located in the same column of M.

Two parameters pertain to the same row or to the same column of M if and only if they do not pertain to

the same permutations.

Step 2. Prove that if graph G is empty then L = |Y2|.
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If G is empty, the only non-zero parameters of F included into M are the on-diagonal elements of A,

which are normalized to be strictly positive. There are |Y2| such parameters in M, and all of them are

located in different columns and different rows, which gives a permutation of length |Y2|.

In example (8), matrix M associated with the empty graph is:

Mempty =

(
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

)

and the length of the lengthiest unconstrained partial permutation is 2, which equals |Y2|.

Step 3. Prove that L ≥ N + |Y2|.

Start with the empty graph spanning Y1 ∪ Y2 ∪ X1, which gives the permutation of length |Y2|, as it is

proven in Step 2. Add independent paths from G into this graph one-by-one. When a new path xj0xj1 . . . xjs

is added to the graph, modify the permutation in the following manner:

(1) Add element fj1j0 from matrix F to the permutation. Since xj0 ∈ X1 and xj1 ∈ Y1 ∪Y2, parameter

fj1j0 is in M.

(2) For k = 1, 2, . . . , s − 1, remove fjkjk , and add fjkjk+1
. Since xjk ∈ Y2 and xjk+1

∈ Y1 ∪ Y2, pa-

rameters fjkjk and fjkjk+1
are in M. Since the new path is independent of the previously added

paths, fjkjk+1
is located in a different row and in a different column than the permutations associ-

ated with the previously added paths, so it can be included into the permutation. Each parameter

fj0j1 , fj1j2 , . . . , fjs−1js and the parameters kept from the previous paths pertain to the same permu-

tation by the result demonstrated in Step 1.

Therefore, adding a new independent path increases the number of parameters included into the permutation

by 1. When other parameters, which are not associated with the considered independent paths, are added

to matrix M, the length of the permutation does not decrease, so L ≥ N + |Y2|.

In example (8), adding path z3 → y4 → y3 → y2 gives:(
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

)
⇒

(
0 0 0 0 0
1 0 0 0 0
0 1 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

(
0 0 0 0 0
1 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)

and adding z4 → y5 produces: ( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 −b54
0 0 0 0 0

)

which produces a permutation of length 4.

Step 4. Prove that N ≥ L− |Y2|
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Consider a permutation of length L. Since all parameters associated with one permutation are located

in different columns of matrix F, at least L − |Y2| parameters must be located in the columns associated

with the indices of X1. I prove that each such parameter guarantees the existence of one path from X1 to

Y1, and from Step 1 I know that all these paths must be independent.

Consider one such parameter, say fj1j0 , where xj0 ∈ X1. If xj1 ∈ Y1, then the path is found. Assume

that xj1 6∈ Y1, so xj1 ∈ Y2. Since fj1j0 have been included into the permutation, parameter fj1j1 , which

is normalized to be positive, cannot be included into this permutation, because it is in the same row as

fj1j0 . Therefore, column j1 either is not included into permutation, or there exists parameter fj2j1 , which

is included. In the first case there must be at least one more parameter included into the permutation

from the columns associated with the indices of X1, because otherwise the total length of the permutation

would be less that L, so consider that parameter instead of fj1j0 . In the second case, see where the edge

associated with fj2j1 leads to. If xj2 ∈ Y1, then a path have been found. If xj2 ∈ Y2, keep going through the

permutation until Y1 is reached or this is determined that there exists another parameter in this permutation

in a column associated with X1.

Therefore, there is at least L− |Y2| independent paths starting with a node in X1 and reaching nodes in

Y1. Because adding new edges does not decrease the number of the existing independent paths, N ≥ L−|Y2|

From Steps 3 and Step 4 I conclude that L = N + |Y2| �

A.2. Review of the Rank Condition. Because of the normality assumption, f(Y |Z) can be uniquely

specified by matrices Λ and Ω, which are defined by:

E(Y |Z) = A−1B · Z ≡ Λ · Z(10a)

Var(Y − E(Y |Z)) =
(
ATΣ−1A

)−1 ≡ Ω(10b)

Knowing matrices Λ and Ω, however, does not suffice for estimation of parameters A, B, and Σ of the

structural model (1) unless n = 1. The reason is that there exist many different structural models ob-

servationally equivalent to model (1), and all observationally equivalent models by definition produce the

same values of Λ and Ω. Indeed, two models with different parameter values (A,B,Σ) and (Ã, B̃, Σ̃)

are observationally equivalent if and only if there exists nonsingular n × n matrix D such that Ã = DA,

B̃ = DB, and Σ̃ = DΣDT , which result can be verified directly using (10). To estimate the structural

model, therefore, additional restrictions need to be imposed on the matrices of parameters, which are known

as the identification constraints.
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The identification constraints on row i of parameters P̂
n×(n+m)

=

(
A

n×n
−B
n×m

)
are written as:

(11) eTi P̂Ψi = 0

where ei is the ith row of the identity matrix, and Ψi is the matrix summarizing the constraints imposed

on row i of P̂.

Consider example (??). Matrix P̂ for this model is given by:

P̂ =

(
1 0 0 −b11 0
−a21 1 0 0 −b22
−a31 −a32 1 0 0

)
The constraints on parameters are summarized by:

Ψ1 =

(
0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

)
Ψ2 =

(
0 0
0 0
1 0
0 1
0 0

)
Ψ3 =

(
0 0
0 0
0 0
1 0
0 1

)

The identification of a given parameter is usually verified in the literature using the rank condition. The

rank condition says that the parameters in row i of matrix P̂ are identified if and only if rank
(
P̂Ψi

)
= n−1,

see, for example, Greene (2012). In the considered example (??), all parameters are identified in almost all

parameter points, because in almost all parameter points I have:

rank
(
P̂Ψ1

)
= rank

(
0 0 0
1 0 −b22
−a32 1 0

)
= 2; rank

(
P̂Ψ2

)
= rank

(
0 −b11
0 0
1 0

)
= 2; rank

(
P̂Ψ3

)
= rank

(−b11 0
0 −b22
0 0

)
= 2.

A.3. Proof of Proposition 1. Let Pi be the set of parents of yi, and P̄i = Pc
i \ yi, where Pc

i is the

complement of Pi in X , and “\” is the set difference operator. Let Y−i = Y \ yi.

Proof of Proposition 1. Consider matrix Mi obtained from P̂Ψi by deleting the ith row. Since each element

in the ith row of P̄Ψi is constrained to zero by definition of Ψi, I have: rank (Mi) = rank
(
P̂Ψi

)
.

By definition of Ψi, each column of P̂Ψi, as well as each column of Mi, has the index of a variable from

P̄i, and each node from P̄i has the index of a column of Mi. Therefore, using notation from Lemma 1, I

can write: Y2 ∪ X1 = P̄i. Each row of Mi has the index of an endogenous variable, and each endogenous

variable except yi has the index of a column of Mi, so I can use: Y1 ∪Y2 = Y−i. This gives: Y1 = Y−i ∩Pi,

Y2 = Y−i ∩ P̄i, and X1 = Z ∩ P̄i.

Let me prove the necessity of the graphical rank condition. If yi is identified then the rank condition is

satisfied, so rank (Mi) = n− 1, and there exists n− 1 independent columns in Mi; consider any set of n− 1

independent columns. The determinant of the matrix obtained from the independent columns of Mi must

be not zero, therefore, in Leibniz formula for determinant of Mi, there exists at least one unconstrained
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permutation of length n − 1. Then, from Lemma 1, there exists n − 1 − |Y2| = |Y1| independent paths

starting in X1 and reaching Pi. Therefore, for each yj ∈ Y−i ∩Pi there exists an independent path starting

in Z∩P̄i and reaching yj . Proposition 1 also says that for each node zj ∈ Pi∩Z there exists an independent

path starting in Z and reaching zj ; however, the latter condition is always satisfied.

Now let me prove the sufficiency. If for each parent of yi there exists and independent identifying path,

then for each yj ∈ Y1 there exists an independent path starting with a node in X1 and reaching yj . By Lemma

1, there exists a partial permutation of length (n− 1) in Mi such that each parameter of this permutation

is not constrained to zero. I take the columns of Mi associated with this permutation, and calculate the

determinant of the obtained square matrix. Since the determinant can be calculated using Leibniz formula

as a sum over all permutations, and since one permutation is not constrained to zero, the determinant is zero

only if this non-zero permutation is exactly offset by other non-zero permutations, which does not happen

in almost all parameter points. Therefore, in almost all parameter points rank (Mi) = (n− 1), so the rank

condition is satisfied. �

Appendix B. Proof of Proposition 2

B.1. Review of Rubio-Ramı́rez et al. (2010) condition for identification, and of the theory of

partial identificatin. Unlike the literature on simultaneous equations models, the literature on structural

vector autoregression models usually assumes that the structural shocks are independent, so matrix Σ is

diagonal. In the Gaussian case, two SVAR models are said to be observationally equivalent if they produce

the same values of Λ and Ω defined by (10). This is well-known that two SVAR models defined by parameter

points (A,B) and (Ã, B̃) are observationally equivalent if and only if there exists orthonormal matrix R

such that Ã = RA and B̃ = RB, where orthonormal matrix R by definition must satisfy RTR = I.

Since the orthonormal matrix has n(n − 1)/2 degrees of freedom, a necessary condition for identification

formulated by Rothenberg (1971) requires at least n(n−1)/2 constraints imposed on matrix P̄ = (A −B)

for the full identification.

Rubio-Ramı́rez et al. (2010) in Theorem 1 propose the following condition for identification. To verify

the identification of parameters located in the ith row of P̂, calculate the rank of matrices M1,M2, . . . ,Mi

composed in the following way:

(12) Mj =


F (A,B) Ψj


[

Ij×j

]
[
0(n−j)×j

]

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The rank of matrices Mj for j = 1, 2, . . . , i may depend on the order of variables in vector Y . Rubio-Ramı́rez

et al. (2010) prove that if there exists such order that for j = 1, 2, . . . , i the rank of Mj is n, then the ith

row of P̂ is globally identified in almost all parameter points.

In example (2), to verify the identification of parameters under the assumption of shocks independence,

assume F (A,B) = (A B), reorder the variables in the reverse order, and calculate the rank of the following

matrices:

(13) M1 =


0 0 1

0 −b22 0

−b11 −b12 0

 M2 =


0 1 0

0 0 1

−b11 0 0

 M3 =


1 0 0

0 1 0

0 0 1


Matrices M1, M2, and M3 have rank 3 in almost all parameter points, therefore, this model is fully identified

in almost all parameter points.

Theory of partial identification, reviewed in Christiano et al. (1999), proposes another sufficient condition

for identification. If all variables in Y can be divided into three groups, such that the first group has the

only variable yi, the second group includes the variables, which influence yi but not influenced by yi, and

the third group includes the variables influenced by yi, but which do not influence yi, then yi is identified.

I combine the sufficient condition of Rubio-Ramı́rez et al. (2010) with the theory of partial identification,

and in this way I can prove partial identification of a new class of models. Consider, for example, model (3).

The theory of partial identification does not prove identification of any parameter in this model, because

each variable of Y pertain to one of causal cycles. Rubio-Ramı́rez et al. (2010) condition for identification

is not satisfied for any parameters, because whichever the order of variables in Y , rank (M1) < 4. However,

I can use Proposition 2 to show that a combination of these approaches suffices to prove that the third and

forth lines of A in (3) are identified.

B.2. Proof of Propositions 2 and 3. Use the notation that was introduced in Appendix A, and add the

following one. Let Φ ⊂ Y be the set of nodes, which have been identified, and Φc be the complement of

Φ in Y, so Φc = Y \ Φ, where “\” is the set difference operator. Let Di be the set of descendants of yi,

Dc
i = Y \ Di, and D̄i = Dc

i \ yi. By definition in Proposition 2, a path in the causal diagram is identifying

path for parent yj ∈ Pi of node yi if it starts with a node in Z ∪Φ ∪ D̄i and reaches yj . Proposition 2 says

that if for each node from Pi there exists an independent identifying path, node yi is globally identified in

almost all parameter points.
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Proof of Propositions 2 and 3. Since the order of variables is arbitrary, reorder the variables in such way

that the variables from D̄i have indices 1, 2, . . . , n1, where n1 =
∣∣D̄i

∣∣. Divide A into four matrices in a

similar manner:

A =

 A11
n1×n1

A12

A21 A22


Observe that matrix A12 must be zero, because in the opposite case there would exist a path from a

descendant of yi to a non-descendant, but then the latter vertex would also be descendant of yi, which

produces a contradiction.

Apply the argumentation from the literature on partial identification, reviewed, for example, in Christiano

et al. (1999), which proves that if block A12 is constrained to 0, then two models defined by parameter

points (A,B) and
(
Ã, B̃

)
satisfying this restriction are observationally equivalent if and only if there exists

orthonormal matrix R, such that Ã = RA, B̃ = RB, and R has the following block structure:

(14) R =

 R11
n1×n1

0

0 R22


Reorder the variables in Y in such way that the variables with indices 1, 2, . . . , n1 be the non-descendants

of yi, variables with indices n1 + 1, n1 + 2, . . . , i − 1 be the variables associated with Φ ∩ Di, yi be the

node which identification is being examined, and variables with indices i + 1, i + 2, . . . , n be the variables

associated with Φ̄ ∩ Di.

This paragraph of the proof follows the lines of the proof of Theorem 1 in Rubio-Ramı́rez et al. (2010).

Consider matrix M̂i obtained from FΨi by deleting rows 1, 2, . . . , i, and prove that if yi is not identified

then the row rank of M̂i is not full, in which case the rank of Mi defined by (12) is also not full. Indeed,

if yi is not identified then there must exist orthonormal matrix R, having the following properties. First,

because of its special structure given by (14), and because nodes yn1+1, yn1+2, . . . , yi−1 are identified, R has

the following structure:

(15) R =

 I
(i−1)×(i−1)

0

0 R33
(n−i)×(n−i)


Second, since yi is not identified, at least one non-diagonal element in the first row of R33 must be different

from zero. Let vTi be the vector obtained from the first row of R33 by removing the first element, so I have

vi 6= 0. Finally, since the two models must satisfy the identification constraints, I have eiFΨi = 0 and
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eiRFΨi = 0, so ei (R− I) FΨi = 0. Taking into account the properties of R, I get vTi M̂i = 0, so the row

rank of M̂i is not full. This proves that if the row rank of M̂i is full then node yi is identified.

The final step is to apply Lemma 1. By construction of M̂i, Y2 ∪ X1 = P̄i, and Y1 ∪ Y2 = Φc ∩ Di.

Therefore, Y1 = Φc ∩ Di ∩ Pi, Y2 = Φc ∩ Di ∩ P̄i, and X1 = P̄i ∩
(
Φ ∪ D̄i ∪ Z

)
. Lemma 1 proves that if

for each yj ∈ Y1 there exists an independent path starting in X1 and reaching yj , then the row rank of M̂i

is full in almost all parameter points, so yi is identified in almost all parameter points. Proposition 2 also

requires an independent identifying path for each variable in Pi∩
(
Φ ∪ D̄i ∪ Z

)
, but this condition is always

satisfied.

�
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