• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Analysing Online Social Network Data with Biclustering and Triclustering

P. 30-39.
Gnatyshak D. V., Ignatov D. I., Semenov A., Poelmans J.

In this paper we propose two novel methods for analyzing data collected from online social networks. In particular we will do analyses on Vkontake data (Russian online social network). Using biclustering we extract groups of users with similar interests and find communities of users which belong to similar groups. With triclustering we reveal users’ interests as tags and use them to describe Vkontakte groups. After this social tagging process we can recommend to a particular user relevant groups to join or new friends from interesting groups which have a similar taste. We present some preliminary results and explain how we are going to apply these methods on massive data repositories.