• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Dynamics of Technological Growth Rate and the Forthcoming Singularity

P. 287-344.
Grinin L. E., Grinin A., Korotayev A.

In this chapter, we consider the process of technological progress presenting one of the options for measuring its speed throughout the entire historical process. We find that the general dynamics of accelerating technological growth over the past 40 thousand years can be described with amazing accuracy (R2 = 0.99) using the following simplest hyperbolic equation: yt = C/t0 − t, where yt is the technological growth rate measured as a number of technological phase transitions per unit of time. Although since 40,000 BP the speed of technological progress tended to generally increase, however, according to the theory of production principles on which we rely, the acceleration of technological progress had noticeable fluctuations. These fluctuations can be explained by the fact that technological development proceeded within the framework of super-long cycles. We show that, within these cycles, the phases of accumulation of basic breakthrough innovations are replaced by phases of rapid growth of improvements in basic innovations and their wide distribution. These fluctuations between cycle phases affect the pattern of acceleration of technological progress. Currently, there are a number of calculations of the point of singularity of the Big History and global evolution, which generally localize the singularity around the first half of the twenty-first century. The point of singularity in our calculations, if we rely only on historical time points, falls on 2018, that is, in principle, it fully fits the results of other studies. There is a fairly reasonable idea of slowing down a number of important social processes (such as demographic development, urbanization), including the speed of technological progress. Indeed, there are already some grounds for talking about signs of a slowdown in progress from the 1960 to 1970s. However, according to the theory of production principles, as already mentioned, there are strong fluctuations in the acceleration of technological progress. We assume that at the moment technological progress is in the fourth—the scientific and cybernetic—production principle. According to this theory, we expect a powerful acceleration of technological progress in the area between the 2030s and the 2070s. In this case, if we take into account the expected time points, the point of singularity, according to our calculations, is estimated to be around 2106. That is, with this method of calculation, we should first expect a new way of acceleration of technological progress, and then, its slowdown in the region of the end of the twenty-first century—the beginning of the 22nd. We also identify the social mechanism for such acceleration and deceleration: in the coming decades, the process of global ageing can cause technological acceleration first and change its direction, and then closer to the end of the present and the beginning of the next century, on the contrary, elderly society can be a brake on scientific-technological progress.

In book

Dynamics of Technological Growth Rate and the Forthcoming Singularity
Edited by: A. Korotayev, D. J. LePoire. Switzerland: Springer, 2020.