• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Emotion Recognition of a Group of People in Video Analytics Using Deep Off-the-Shelf Image Embeddings

P. 191-198.
Tarasov Alexander V., Savchenko A.

In this paper we address the group-level emotion classification problem in video analytic systems.We propose to apply the MTCNN face detector to obtain facial regions on each video frame. Next, off-the-shelf image features are extracted from each located face using preliminary trained convolutional neural networks. The features of the whole frame are computed as a mean average of image embeddings of individual faces. The resulted frame features are recognized with an ensemble of state-of-the-art classifiers computed as a weighted sum of their outputs. Experimental results with EmotiW 2017 dataset demonstrate that the proposed approach is 2–20% more accurate when compared to the conventional group-level emotion classifiers.