• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

О классификации полных аффинных слоений относительно сильной трансверсальной эквивалентности

С. 403-407.

Complete affine foliations (i.e., foliations admitting the affine geometry as the transversal structure) are investigated. The strong transversal equivalence of complete affine foliations is considered, which is a more refined notion than the transverse equivalence of foliations in the sense of Molino. The classification of complete affine foliations with respect to the strong transversal equivalence is reduced to the classification up to conjugacy of countable subgroups of the affine group $Aff(A^q)$. It is shown that each equivalence class contains a two-dimensional suspended foliation on the manifold, which is an Elenberg--MacLane space of type $K(\pi,1)$.