### Book chapter

## Supervised Learning for Link Prediction Using Similarity Indices

The problem of link prediction gathered a lot of attention in the last few years, arising in dierent applications ranging from recommendation systems to social networks. In this paper, we will describe the most popular similarity indices, compare their performance in their ability to show links with the highest probability of being removed from initial network and describe the approach that allows to use them to predict missing links using supervised machine learning. We will show the accuracy of prediction of this method on examples of real networks.

### In book

A “Network Analysis” section was arranged at the XVIIIth Interna- tional Academic Conference on Economic and Social Development at the Higher School of Economics on 11–12 April 2017. For the third year, this section invited scholars from sociology, political science, management, mathematics, and linguistics who use network analysis in their research projects. During the sessions, speakers discussed the development of mathematical models used in network analysis, studies of collaboration and communication networks, networks’ in- uence on individual attributes, identifcation of latent relationships and regularities, and application of network analysis for the study of concept networks.

The speakers in this section were E. V. Artyukhova (HSE), G. V. Gra- doselskaya (HSE), M. Е. Erofeeva (HSE), D. G. Zaitsev (HSE), S. A. Isaev (Adidas), V. A. Kalyagin (HSE), I. A. Karpov (HSE), A. P. Koldanov (HSE), I. I. Kuznetsov (HSE), S. V. Makrushin (Fi- nancial University), V. D. Matveenko (HSE), A. A. Milekhina (HSE), S. P. Moiseev (HSE), Y. V. Priestley (HSE), A. V. Semenov (HSE), I. B. Smirnov (HSE), D. A. Kharkina (HSE, St. Petersburg), C. F. Fey (Aalto University School of Business), and F. López-Iturriaga (Uni- versity of Valladolid).

We prove existence and uniqueness of a solution to the problem of minimizing the logarithmic energy of vector potentials associated to a d-tuple of positive measures supported on closed subsets of the complex plane. The assumptions we make on the interaction matrix are weaker than the usual ones, and we also let the masses of the measures vary in a compact subset of ℝ+ d. The solution is characterized in terms of variational inequalities. Finally, we review a few examples taken from the recent literature that are related to our results.

The collection represents proceedings of the nineth international conference "Discrete Models in Control Systems Theory" that is held by Lomonosov Moscow State Uneversity and is dedicated in 90th anniversary of Sergey Vsevolodovich Yablonsky's birth. The conference subject are includes: discrete functional systems; discrete functions properties; control systems synthesis, complexity, reliability, and diagnostics; automata; graph theory; combinatorics; coding theory; mathematical methods of information security; theory of pattern recognition; mathematical theory of intellegence systems; applied mathematical logic. The conference is sponsored by Russian Foundation for Basic Research (project N 15-01-20193-г).

Proceedings include extended abstracts of reports presented at the III International Conference on Optimization Methods and Applications “Optimization and application” (OPTIMA-2012) held in Costa da Caparica, Portugal, September 23—30, 2012.

We study dierences in structural connectomes between typically developing and autism spectrum disorders individuals with machine learning techniques using connection weights and network metrics as features. We build linear SVM classier with accuracy score 0:64 and report 16 features (seven connection weights and nine network node centralities) best distinguishing these two groups.

The structural connectome classification is a challenging task due to a small sample size and high dimensionality of feature space. In this paper, we propose a new data prepossessing method that combines geometric and topological connectome normalization and significantly improves classification results. We validate this approach by performing classification between autism spectrum disorder and normal development connectomes in children and adolescents. We demonstrate a significant enhancement in performance using weighted and normalized data over the best available model (boosted decision trees) trained on baseline features.