Book chapter
Tensorizing neural networks
Deep neural networks currently demonstrate state-of-the-art performance in several domains.At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly used fully-connected layers, making it hard to use the models on low-end devices and stopping the further increase of the model size. In this paper we convert the dense weight matrices of the fully-connected layers to the Tensor Train format such that the number of parameters is reduced by a huge factor and at the same time the expressive power of the layer is preserved.In particular, for the Very Deep VGG networks we report the compression factor of the dense weight matrix of a fully-connected layer up to 200000 times leading to the compression factor of the whole network up to 7 times.
In book
Development of linguistic technologies and penetration of social media provide powerful possibilities to investigate users’ moods and psychological states of people. In this paper we discussed possibility to improve accuracy of stock market indicators predictions by using data about psychological states of Twitter users. For analysis of psychological states we used lexicon-based approach, which allow us to evaluate presence of eight basic emotions in more than 755 million tweets. The application of Support Vectors Machine and Neural Networks algorithms to predict DJIA and S&P500 indicators are discussed.
This book constitutes revised selected papers from the First International Workshop on Machine Learning, Optimization, and Big Data, MOD 2015, held in Taormina, Sicily, Italy, in July 2015. The 32 papers presented in this volume were carefully reviewed and selected from 73 submissions. They deal with the algorithms, methods and theories relevant in data science, optimization and machine learning.
In work the developed model of adaptive management by the vertically integrated companies based on the system approach supporting the mechanism of an operational management in a uniform cycle of strategic planning, within the limits of faster time is presented. Thus for a finding of optimum values of operating parameters special algorithms of a class of genetic algorithms are used, neural networks the example of the developed system of adaptive management for the vertically-integrated oil company is etc. presented.
The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.
The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.
The article discusses development of the segmented characters classifier of the Russian alphabet a nd of the Arabic numerals on the basis of block neural network structures including the plurality of blocks for each individual character recognition and for the synthesis block decision. Keywords: pattern recognition, neural network, training of neural n etworks, base of hand - written characters, recognition of hand - written characters
This book constitutes the refereed proceedings of the 6th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2014, held in Montreal, QC, Canada, in October 2014. The 24 revised full papers presented were carefully reviewed and selected from 37 submissions for inclusion in this volume. They cover a large range of topics in the field of learning algorithms and architectures and discussing the latest research, results, and ideas in these areas.
The application of neural networks for prediction of long-term changes of observed parameter on the example of thermal treatment control of concrete products is considered. Experimental results are presented, and the algorithm of the work plan of an actuating mechanism is proposed.
The paper theorizes on the general architectonics of idealized cognitive models (ICMs) and their involvement in metonymy and metaphor. The article posits that an ICM's structure should reflect the architecture of the neural network/s engaged in processing of a given concept. The ICM nodes, or cogs, construct a complex, hierarchically organized neural connections, with the superior nodes being highly selective, invariant and prototypical. Signals travelling from one cog to another within one ICM are essentially metonymical, while a cog shared by two or more ICMs marks a metaphoric shift.