Book chapter
О сложности задачи решения линейных уравнений над конечными подстановками
С. 221-223.
Захаров В. А., Новикова Т. А.
Language:
Russian
In book
Edited by: В. Б. Алексеев, О. М. Касим-Заде, В. Б. Кудрявцев Каз.: Отечество, 2014.
Similar publications
Малышев Д. С. Вестник Нижегородского университета им. Н.И. Лобачевского. 2008. № 6. С. 141-146.
Added: Aug 31, 2012
Shvydun S. Математические методы анализа решений в экономике, бизнесе и политике. WP7. Высшая школа экономики, 2015. No. WP7/2015/07.
Two-stage superposition choice procedures, which sequentially apply two choice procedures so that the result of the first choice procedure is the input for the second choice procedure, are studied. We define which of them satisfy given normative conditions, showing how a final choice is changed due to the changes of preferences or a set of feasible alternatives. A theorem is proved showing which normative conditions are satisfied for two-stage choice procedures based on different scoring rules, rules, using majority relation, value function and tournament matrix. A complexity of two-stage choice procedures as well as its runtime on real data are evaluated.
Added: Oct 20, 2015
Веселова Ю. А. В кн.: Фундаментальная информатика, информационные технологии и системы управления: реалии и перспективы. FIITM-2014: материалы международной науч.-практич. конф.. Красноярск: Сибирский федеральный университет, 2014.
When a society needs to take a collective decision one could apply some aggregation method, particularly, voting. One of the main problems with voting is manipulation. We say a voting rule is vulnerable to manipulation if there exists at least one voter who can achieve a better voting result by misrepresenting his or her preferences. The popular approach to comparing manipulability of voting rules is defining complexity class of the corresponding manipulation problem. This paper provides a survey into manipulation complexity literature considering variety of problems with different assumptions and restrictions.
Added: Dec 25, 2014
Захаров В. А., Жайлауова Ш. Р. В кн.: Проблемы теоретической кибернетики: XVIII международная конференция (Пенза, 19-23 июня 2017 г.). М.: МГУ, МАКС Пресс, 2017. С. 84-87.
Added: Oct 22, 2017
Added: Aug 31, 2012
Малышев Д. С. Дискретный анализ и исследование операций. 2009. Т. 16. № 2. С. 85-94.
Added: Aug 31, 2012
Захаров В. А., Новикова Т. А. В кн.: Дискретные модели в теории управляющих систем : IX Международная конференция, Москва и Подмосковье, 20-22 мая 2015 г.: Труды. М.: МАКС Пресс, 2015. С. 173-176.
Added: Oct 12, 2015