### ?

## Dynamic Systems, Nonlinear Analysis and Application, Materials of the international conference. Yerevan, 2011

M. :
-, 2011.

Conference covers both fundamental problems ofthe theory, and application to research of complex organizational and technical systems.

Бекларян А.Л., В кн. : Dynamic Systems, Nonlinear Analysis and Application, Materials of the international conference. Yerevan, 2011. : М. : ЦЭМИ РАН, 2011. С. 37-39.

We consider the first boundary value problem for elliptic systems defined in unbounded domains, which solutions satisfy the condition of finiteness of the Dirichlet integral also called the energy integral. ...

Added: June 6, 2013

Prokhorov Y., Journal of Algebraic Geometry 2012 Vol. 21 No. 3 P. 563-600

We classify all finite simple subgroups of the Cremona group Cr3(C). ...

Added: September 19, 2012

Bogomolov F. A., Rovinsky M., Central European Journal of Mathematics 2013 Vol. 11 No. 1 P. 17-26

Let Ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group GΨ of the set Ψ. Suppose that H contains the projective group and an arbitrary self-bijection of ...

Added: October 10, 2012

Fedor Bogomolov, Rovinsky M., / Cornell University. Series math "arxiv.org". 2012.

Let $\Psi$ be the projectivization (i.e., the set of one-dimensional vector
subspaces) of a vector space of dimension $\ge 3$ over a field. Let $H$ be a
closed (in the pointwise convergence topology) subgroup of the permutation
group $\mathfrak{S}_{\Psi}$ of the set $\Psi$. Suppose that $H$ contains the
projective group and an arbitrary self-bijection of $\Psi$ transforming a
triple of ...

Added: November 21, 2014

F.A. Bogomolov, Vik.S. Kulikov, / Cornell University. Series math "arxiv.org". 2014.

In \cite{Ku0}, the ambiguity index $a_{(G,O)}$ was introduced for each
equipped finite group $(G,O)$. It is equal to the number of connected
components of a Hurwitz space parametrizing coverings of a projective line with
Galois group $G$ assuming that all local monodromies belong to conjugacy
classes $O$ in $G$ and the number of branch points is greater than some
constant. ...

Added: November 21, 2014

F. A. Bogomolov, Vik. S. Kulikov, European Journal of Mathematics 2015 Vol. 1 No. 4 P. 260-278

In \cite{Ku0}, the ambiguity index $a_{(G,O)}$ was introduced for each equipped finite group $(G,O)$. It is equal to the number of connected components of a Hurwitz space parametrizing coverings of a projective line with Galois group $G$ assuming that all local monodromies belong to conjugacy classes $O$ in $G$ and the number of branch points ...

Added: November 21, 2014

Shilin I., Доклады Академии наук 2016 Т. 469 № 3 С. 287-290

В работе показано, что неустойчивость аттракторов Милнора по Ляпунову является локально топологически типичным динамическим явлением, которое наблюдается в присутствии устойчивых гомоклинических касаний для 2-сжимающих периодических седел. ...

Added: October 14, 2018

Protasov V., Systems and Control Letters 2016 Vol. 90 P. 54-60

We prove the existence of positive linear switching systems (continuous time), whose trajectories grow to infinity, but slower than a given increasing function. This implies that, unlike the situation with linear ODE, the maximal growth of trajectories of linear systems may be arbitrarily slow. For systems generated by a finite set of matrices, this phenomenon ...

Added: February 22, 2016

M. : RUDN, 2012

This issue contains works on nonlinear analysis represented on the 8th congress of the International Society for Analysis, its Applications, and Computation (ISAAC), Moscow, Russia, August 22--27, 2011. ...

Added: October 14, 2014

Springer, 2009

Vladimir Arnold is one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This first volume of his Collected Works focuses on representations of functions, celestial mechanics, and ...

Added: February 20, 2013

Stankevich N., Kazakov A., Gonchenko S., Chaos 2020 Vol. 30 Article 123129

The generalized four-dimensional Rössler system is studied. Main bifurcation scenarios leading to a hyperchaos are described phenomenologically and their implementation in the model is demonstrated. In particular, we show that the formation of hyperchaotic invariant sets is related mainly to cascades (finite or infinite) of nondegenerate bifurcations of two types: period-doubling bifurcations of saddle cycles with a ...

Added: January 18, 2021

Pardalos P. M., Rassias T. undefined., Springer, 2014

This volume consists of chapters written by eminent scientists and engineers from the international community and presents significant advances in several theories, and applications of an interdisciplinary research. These contributions focus on both old and recent developments of Global Optimization Theory, Convex Analysis, Calculus of Variations, and Discrete Mathematics and Geometry, as well as several ...

Added: May 30, 2014

Smilga I., / Cornell University. Series arXiv "math". 2016. No. 1612.08942.

Added: September 26, 2018

Stanislav Minkov, Ivan Shilin, / Cornell University. Series math "arxiv.org". 2020. No. arXiv:2011.04824.

For Milnor, statistical, and minimal attractors, we construct examples of smooth flows φ on S^2 for which the attractor of the Cartesian square of φ is smaller than the Cartesian square of the attractor of φ. In the example for the minimal attractors, the flow φ also has an SRB-measure such that its square does ...

Added: November 12, 2020

Stankevich N., Shchegoleva N. A., Sataev I. R. et al., Journal of Computational and Nonlinear Dynamics 2020 Vol. 15 No. 11 P. 111001

Using an example a system of two coupled generators of quasiperiodic oscillations, we study the occurrence of chaotic dynamics with one positive, two zero and several negative Lyapunov exponents. It is shown that such dynamic arises as a result of a sequence of bifurcations of two-frequency torus doubling and involve saddle tori occurring at their ...

Added: September 4, 2020

Aranson S. K., Belitsky G. R., Zhuzhoma E. V., American Mathematical Society, 1996

The book is an introduction to the qualitative theory of dynamical systems on manifolds of low dimension (on the circle and on surfaces). Along with classical results, it reflects the most significant achevements in this area obtained in recent times. The reader of this book need to be familiar only with basic courses in differential ...

Added: October 2, 2014

Pardalos P. M., Rassias T. undefined., Springer, 2014

The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional ...

Added: May 30, 2014

Blokh A., Oversteegen L., Ptacek R. et al., / Cornell University. Series math "arxiv.org". 2014.

A crucial fact established by Thurston in his 1985 preprint is that distinct \emph{minors} of quadratic laminations do not cross inside the unit disk; this led to his construction of a combinatorial model of the Mandelbrot set. Thurston's argument is based upon the fact that \emph{majors} of a quadratic lamination never enter the region between ...

Added: February 11, 2015

Mikheev A. V., Теория. Практика. Инновации 2017 № 9 (21)

In this paper we consider the calculation of a dynamical system described by a second-order differential equation in which a fundamental system of solutions consisting of functions of exponential type is replaced by bounded functions of the Verhulst model. The time dependence of the forces acting on the dynamical system is analyzed, and the obtained ...

Added: September 6, 2017

Romaskevich O. L., L'Enseignement Mathématique 2014

We consider 3 -periodic orbits in an elliptic billiard. Numerical experiments conducted by Dan Reznik have shown that the locus of the centers of inscribed circles of the corresponding triangles is an ellipse. We prove this fact by the complexification of the problem coupled with the complex law of reflection. ...

Added: December 25, 2014

Smilga I., / Cornell University. Series arXiv "math". 2012. No. 1205.4442.

In this paper, we give a few results on the local behavior of harmonic functions on the Sierpinski triangle - more precisely, of their restriction to a side of the triangle. First we present a general formula that gives the Hölder exponent of such a function in a given point. From this formula, we deduce ...

Added: September 26, 2018

Blokh A., Oversteegen L., Ptacek R. et al., / Cornell University. Series math "arxiv.org". 2015.

Thurston parameterized quadratic invariant laminations with a non-invariant lamination, the quotient of which yields a combinatorial model for the Mandelbrot set. As a step toward generalizing this construction to cubic polynomials, we consider slices of the family of cubic invariant laminations defined by a fixed critical leaf with non-periodic endpoints. We parameterize each slice by ...

Added: February 11, 2015

Bogomolov F. A., Kulikov V. S., Central European Journal of Mathematics 2013 Vol. 11 No. 2 P. 254-263

The article contains a new proof that the Hilbert scheme of irreducible surfaces of degree m in ℙ m+1 is irreducible except m = 4. In the case m = 4 the Hilbert scheme consists of two irreducible components explicitly described in the article. The main idea of our approach is to use the proof ...

Added: November 21, 2012

Demina M.V., Kudryashov N. A., Regular and Chaotic Dynamics 2016 Vol. 21 No. 3 P. 351-366

Polynomial dynamical systems describing interacting particles in the plane are
studied. A method replacing integration of a polynomial multi-particle dynamical system
by finding polynomial solutions of partial differential equations is introduced. The method
enables one to integrate a wide class of polynomial multi-particle dynamical systems. The
general solutions of certain dynamical systems related to linear second-order partial differential
equations are ...

Added: October 5, 2018

Filimonov D., Клепцын В. А., Nonlinearity 2014 Vol. 27 No. 6 P. 1205-1223

We study possible one-end finitely presented subgroups of <img />, acting without finite orbits. Our main result, theorem 1, establishes that any such action possesses the so-called property (<img />), that allows one to make distortion-controlled expansion and is thus sufficient to conclude that the action is Lebesgue-ergodic. We also propose a path towards full ...

Added: October 23, 2014