### Book

## Conceptual Exploration

This is the first textbook on attribute exploration, its theory, its algorithms for applications, and some of its many possible generalizations. Attribute exploration is useful for acquiring structured knowledge through an interactive process, by asking queries to an expert. Generalizations that handle incomplete, faulty, or imprecise data are discussed, but the focus lies on knowledge extraction from a reliable information source.

The method is based on Formal Concept Analysis, a mathematical theory of concepts and concept hierarchies, and uses its expressive diagrams. The presentation is self-contained. It provides an introduction to Formal Concept Analysis with emphasis on its ability to derive algebraic structures from qualitative data, which can be represented in meaningful and precise graphics.

A novel approach to triclustering of a three-way binary data is proposed. Tricluster is defined in terms of Triadic Formal Concept Analysis as a dense triset of a binary relation Y , describing relationship between objects, attributes and conditions. This definition is a relaxation of a triconcept notion and makes it possible to find all triclusters and triconcepts contained in triclusters of large datasets. This approach generalizes the similar study of concept-based biclustering.

This book constitutes the refereed proceedings of the 10th International Conference on Formal Concept Analysis, ICFCA 2012, held in Leuven, Belgium in May 2012. The 20 revised full papers presented together with 6 invited talks were carefully reviewed and selected from 68 submissions. The topics covered in this volume range from recent advances in machine learning and data mining; mining terrorist networks and revealing criminals; concept-based process mining; to scalability issues in FCA and rough sets.

This book constitutes the second part of the refereed proceedings of the 10th International Conference on Formal Concept Analysis, ICFCA 2012, held in Leuven, Belgium in May 2012. The topics covered in this volume range from recent advances in machine learning and data mining; mining terrorist networks and revealing criminals; concept-based process mining; to scalability issues in FCA and rough sets.

This paper addresses the important problem of efficiently mining numerical data with formal concept analysis (FCA). Classically, the only way to apply FCA is to binarize the data, thanks to a so-called scaling procedure. This may either involve loss of information, or produce large and dense binary data known as hard to process. In the context of gene expression data analysis, we propose and compare two FCA-based methods for mining numerical data and we show that they are equivalent. The first one relies on a particular scaling, encoding all possible intervals of attribute values, and uses standard FCA techniques. The second one relies on pattern structures without *a priori* transformation, and is shown to be more computationally efficient and to provide more readable results. Experiments with real-world gene expression data are discussed and give a practical basis for the comparison and evaluation of the methods.

The problem of detecting terms that can be interesting to the advertiser is considered. If a company has already bought some advertising terms which describe certain services, it is reasonable to find out the terms bought by competing companies. A part of them can be recommended as future advertising terms to the company. The goal of this work is to propose better interpretable recommendations based on FCA and association rules.

Formal Concept Analysis (FCA) is a mathematical technique that has been extensively applied to Boolean data in knowledge discovery, information retrieval, web mining, etc. applications. During the past years, the research on extending FCA theory to cope with imprecise and incomplete information made significant progress. In this paper, we give a systematic overview of the more than 120 papers published between 2003 and 2011 on FCA with fuzzy attributes and rough FCA. We applied traditional FCA as a text-mining instrument to 1072 papers mentioning FCA in the abstract. These papers were formatted in pdf files and using a thesaurus with terms referring to research topics, we transformed them into concept lattices. These lattices were used to analyze and explore the most prominent research topics within the FCA with fuzzy attributes and rough FCA research communities. FCA turned out to be an ideal metatechnique for representing large volumes of unstructured texts.

A vast amount of documents in the Web have duplicates, which is a challenge for developing efficient methods that would compute clusters of similar documents. In this paper we use an approach based on computing (closed) sets of attributes having large support (large extent) as clusters of similar documents. The method is tested in a series of computer experiments on large public collections of web documents and compared to other established methods and software, such as biclustering, on same datasets. Practical efficiency of different algorithms for computing frequent closed sets of attributes is compared.

An incremental algorithm to construct a lattice from a collection of sets is derived, refined, analyzed, and related to a similar previously published algorithm for constructing concept lattices. The lattice constructed by the algorithm is the one obtained by closing the collection of sets with respect to set intersection. The analysis explains the empirical efficiency of the related concept lattice construction algorithm that had been observed in previous studies. The derivation highlights the effectiveness of a correctness-byconstruction approach to algorithm development.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.