### ?

## perspectives in representation theory

Vol. 610: perspectives in representation theory.
Providence :
American Mathematical Society, 2014.

Finkelberg M., Braverman A., Shiraishi J.

Academic editor: Etingof P.

Let G be an almost simple simply connected complex Lie group, and let G/U be its base affine space. In this paper we formulate a conjecture which provides a new geometric interpretation of the Macdonald polynomials associated to G via perverse coherent sheaves on the scheme of formal arcs in the affinizationof G/U. We prove our conjecture for G=SL(N) using the so called Laumon resolution of the space of quasimaps. In the course of the proof we also give a K-theoretic version of the main result of Negut.

Ayzenberg A., Masuda M., / Cornell University. Series arXiv "math". 2019.

Let a compact torus T=T^{n−1} act on a smooth compact manifold X=X^{2n} effectively, with nonempty finite set of fixed points, and suppose that stabilizers of all points are connected. If H^{odd}(X)=0 and the weights of tangent representation at each fixed point are in general position, we prove that the orbit space Q=X/T is a homology (n+1)-sphere. If, in addition, π_1(X)=0, then Q is homeomorphic to S^{n+1}. ...

Added: January 14, 2020

Ayzenberg A., Algebraic and Geometric Topology 2020 Vol. 20 No. 6 P. 2957-2994

A periodic tridiagonal matrix is a tridiagonal matrix with additional two entries at the corners. We study the space $X_{n,\lambda}$ of Hermitian periodic tridiagonal $n\times n$-matrices with a fixed simple spectrum $\lambda$. Using the discretized S\edt{c}hr\"{o}dinger operator we describe all spectra $\lambda$ for which $X_{n,\lambda}$ is a topological manifold. The space $X_{n,\lambda}$ carries a natural effective action of a compact $(n-1)$-torus. ...

Added: January 14, 2020

Vologodsky V., Finkelberg M. V., Bezrukavnikov R., Cambridge Journal of Mathematics 2014 Vol. 2 No. 2 P. 163-190

Marc Haiman has reduced Macdonald Positivity Conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjecture where the symmetric group is replaced by the wreath product of S_n and Z/rZ. He has proven the original conjecture by establishing the geometric statement about the ...

Added: December 17, 2015

Feigin E., Makedonskyi I., Orr D., Advances in Mathematics 2018 Vol. 330 P. 997-1033

We introduce generalized global Weyl modules and relate their graded characters to nonsymmetric Macdonald polynomials and nonsymmetric q-Whittaker functions. In particular, we show that the series part of the nonsymmetric q-Whittaker function is a generating function for the graded characters of generalized global Weyl modules. ...

Added: September 13, 2018

Gorsky E., Carlsson E., Mellit A., Mathematische Annalen 2019

The earlier work of the first and the third named authors introduced the algebra A_q,t and its polynomial representation. In this paper we construct an action of this algebra on the equivariant K-theory of certain smooth strata in the flag Hilbert schemes of points on the plane. In this presentation, the fixed points of torus action ...

Added: September 3, 2019

Olshanski G., Working papers by Cornell University. Series math "arxiv.org" 2020

Using Okounkov's q-integral representation of Macdonald polynomials we construct an infinite sequence Ω1,Ω2,Ω3,… of countable sets linked by transition probabilities from ΩN to ΩN−1 for each N=2,3,…. The elements of the sets ΩN are the vertices of the extended Gelfand-Tsetlin graph, and the transition probabilities depend on the two Macdonald parameters, q and t. These ...

Added: January 19, 2021

Feigin E., Makedonskyi I., / Cornell University. Series math "arxiv.org". 2014. No. 1407.6316.

The Cherednik-Orr conjecture expresses the t\to\infty limit of the nonsymmetric Macdonald polynomials in terms of the PBW twisted characters of the affine level one Demazure modules. We prove this conjecture in several special cases. ...

Added: August 10, 2014

Khoroshkin A., / arXiv.org. Series 1312.7053 "1312". 2013. No. 1312.7053.

The aim of this paper is to introduce the categorical setup which helps us to relate the theory of Macdonald polynomials and the theory of Weyl modules for current Lie algebras discovered by V.\,Chari and collaborators. We identify Macdonald pairing with the homological pairing on the ring of characters of the Lie algebra of currents. ...

Added: February 14, 2014

Cherednik I., Feigin E., Advances in Mathematics 2015 Vol. 282 P. 220-264

Given a reduced irreducible root system, the corresponding nil-DAHA is used to calculate the extremal coefficients of nonsymmetric Macdonald polynomials in the limit t→∞ and for antidominant weights, which is an important ingredient of the new theory of nonsymmetric q-Whittaker function. These coefficients are pure q-powers and their degrees are expected to coincide in the ...

Added: September 3, 2015

Feigin E., Kato S., Makedonskyi I., Journal fuer die reine und angewandte Mathematik 2020 Vol. 764 P. 181-216

We study the non-symmetric Macdonald polynomials specialized at infinity from various points of view. First, we define a family of modules of the Iwahori algebra whose characters are equal to the non-symmetric Macdonald polynomials specialized at infinity. Second, we show that these modules are isomorphic to the dual spaces of sections of certain sheaves on ...

Added: August 12, 2020

Panov T., / Cornell University. Series arXiv "math". 2019.

We describe the basic Dolbealut cohomology algebra of the canonical foliation on a class of complex manifolds with a torus symmetry group. This class includes complex moment-angle manifolds, LVM- and LVMB-manifolds and, in most generality, complex manifolds with a maximal holomorphic torus action. We also provide a dga model for the ordinary Dolbeault cohomology algebra. ...

Added: November 1, 2019

Bezrukavnikov R., Finkelberg M. V., Cambridge Journal of Mathematics 2014 Vol. 2 No. 2 P. 163-190

Marc Haiman has reduced Macdonald Positivity Conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjecture where the symmetric group is replaced by the wreath product of S_n and Z/rZ. He has proven the original conjecture by establishing the geometric statement about the ...

Added: December 20, 2014

Panov T., Зейникешева И. К., Труды Математического института им. В.А. Стеклова РАН 2022 Т. 317 С. 157-167

We compute the equivariant cohomology $H^*_{T_I}(Z_K)$ of moment-angle complexes $Z_K$ with respect to the action of coordinate subtori $T_I \subset T^m$. We give a criterion for the equivariant formality of $Z_K$ and obtain specifications for the cases of flag complexes and graphs. ...

Added: November 11, 2022

Olshanski G., Communications in Mathematical Physics 2021 Vol. 385 P. 595-631

We introduce and study a family of (q, t)-deformed discrete N-particle beta ensembles, where q and t are the parameters of Macdonald polynomials. The main result is the existence of a large-N limit transition leading to random point processes with infinitely many particles. ...

Added: June 22, 2021

Окубо Ю. undefined., Journal of Physics: Conference Series 2017 Vol. 804 No. 012036 P. 1-8

We investigate the existence and the orthogonality of the generalized Jack symmetric functions which play an important role in the AGT relations. We show their orthogonality by deforming them to the generalized Macdonald symmetric functions. ...

Added: October 26, 2017

Olshanski G., Selecta Mathematica, New Series 2021 Vol. 27 Article 41

Using Okounkov’s q-integral representation of Macdonald polynomials we construct an infinite sequence Ω1,Ω2,Ω3,… of countable sets linked by transition probabilities from Ω𝑁 to Ω𝑁−1 for each 𝑁=2,3,…. The elements of the sets Ω𝑁 are the vertices of the extended Gelfand–Tsetlin graph, and the transition probabilities depend on the two Macdonald parameters, q and t. These ...

Added: June 4, 2021

Panov T., Ishida H., / Cornell University. Series arXiv "math". 2018.

We describe the basic cohomology ring of the canonical holomorphic foliation on a moment-angle manifold, LVMB-manifold or any complex manifold with a maximal holomorphic torus action. Namely, we show that the basic cohomology has a description similar to the cohomology ring of a complete simplicial toric variety due to Danilov and Jurkiewicz. This settles a ...

Added: November 1, 2019

Ayzenberg A., / Arxiv Cornell University Library. Series 1803.11433 "1803.11433 ". 2018. No. 11433.

A periodic tridiagonal matrix is a tridiagonal matrix with additional two entries at the corners. We study the space of Hermitian periodic tridiagonal n×n-matrices with a fixed simple spectrum. Using discrete Shroedinger operator we give a condition on the spectrum which guarantees that this space is a manifold. The space carries a natural effective action of ...

Added: October 15, 2018

Finkelberg M. V., MATHEMATICAL SCIENCES 2013 Vol. 51 No. 596 P. 46-51

This is a survey of the author's and his collaboratots' recent works on the quasiflags' moduli spaces introduced by Gerard Laumon some 25 years ago. These spaces are used in the study of geometric Eisenstein series, quantum cohomology and K-theory of the flag varieties, Weyl modules, Nekrasov partition function of N=2 supersymmetric gauge quantum field ...

Added: February 14, 2013

Kotelnikova M. V., Aistov A., Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Социальные науки 2019 Т. 55 № 3 С. 183-189

The article describes a method that allows to improve the content of disciplines of the mathematical cycle by dividing them into invariant (general) and variable parts. The invariants were identified for such disciplines as «Linear algebra», «Mathematical analysis», «Probability theory and mathematical statistics» delivered to Bachelors program students of economics at several universities. Based on ...

Added: January 28, 2020

Borzykh D., ЛЕНАНД, 2021

Книга представляет собой экспресс-курс по теории вероятностей в контексте начального курса эконометрики. В курсе в максимально доступной форме изложен тот минимум, который необходим для осознанного изучения начального курса эконометрики. Данная книга может не только помочь ликвидировать пробелы в знаниях по теории вероятностей, но и позволить в первом приближении выучить предмет «с нуля». При этом, благодаря доступности изложения и небольшому объему книги, ...

Added: February 20, 2021

В. Л. Попов, Математические заметки 2017 Т. 102 № 1 С. 72-80

Мы доказываем, что аффинно-треугольные подгруппы являются борелевскими подгруппами групп Кремоны. ...

Added: May 3, 2017

Красноярск : ИВМ СО РАН, 2013

Труды Пятой Международной конференции «Системный анализ и информационные технологии» САИТ-2013 (19–25 сентября 2013 г., г.Красноярск, Россия): ...

Added: November 18, 2013

Min Namkung, Younghun K., Scientific Reports 2018 Vol. 8 No. 1 P. 16915-1-16915-18

Sequential state discrimination is a strategy for quantum state discrimination of a sender’s quantum
states when N receivers are separately located. In this report, we propose optical designs that can
perform sequential state discrimination of two coherent states. For this purpose, we consider not
only binary phase-shifting-key (BPSK) signals but also general coherent states, with arbitrary prior
probabilities. Since ...

Added: November 16, 2020