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Abstract. Let G be an almost simple simply connected complex Lie group,
and let G/U− be its base affine space. In this paper we formulate a conjecture,
which provides a new geometric interpretation of the Macdonald polynomials
associated to G via perverse coherent sheaves on the scheme of formal arcs in
the affinization of G/U−. We prove our conjecture for G = SL(N) using the so
called Laumon resolution of the space of quasi-maps (using this resolution one
can reformulate the statement so that only “usual” (not perverse) coherent
sheaves are used). In the course of the proof we also give a K-theoretic version
of the main result of Negut (2009).

1. Introduction

1.1. Notations. Let g be a semi-simple Lie algebra over C and let G be the
corresponding simply connected group. Let B,B− ⊂ G be a pair of opposite Borel
subgroups with unipotent radicals U,U− and let T = B ∩B− be the corresponding
maximal torus. We denote by Λ the lattice of cocharacters of T (this is also the
coroot lattice of G, since G is simply connected) and by Λ̌ the lattice of characters
of T . We denote by Λ+ the cone consisting of sums of positive coroots of G with
non-negative coefficients. Similarly, we denote by Λ̌+ the cone of dominant weights.

We denote by B the flag variety of G. It can be identified with the quotient
G/B. The choice of B− gives a point in the open B-orbit in B.

For a pair of variables p, q and for any n ∈ N ∪∞ we set

(p; q)n := (1− p)(1− qp) . . . (1− qn−1p).

1.2. Quasi-maps and Laumon spaces. For α ∈ Λ+ we denote by gM
α

the moduli space of maps P1 → B of degree α and by gQM
α its quasi-maps com-

pactification (cf. [2] for a survery on quasi-maps); we shall sometimes omit the
subscript g when it does not lead to a confusion. The scheme QMα possesses a
natural stratification

QMα =
⊔

0≤β≤α

Mβ × Symα−β(P1),

where Symα−β(P1) stands for the space of all formal linear combinations
∑

γixi

where γi ∈ Λ+, xi ∈ P1 and
∑

γi = α. The points {xi} are called the points of
defect of the corresponding quasi-map.
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Similarly, we denote by Zα the space of based quasi-maps of degree α (i.e. those
quasi-maps, which have no defect at ∞ ∈ P1 and which send ∞ to B− regarded as
a point in B). The space QMα has a natural action of PGL(2)×G; here the first
factor acts on P1 and the second on B. This action does not preserve Zα; however,
Gm × T still acts on Zα.

It is well-known that the space QMα is usually singular, but when G = SL(N)
it has a natural small resolution of singularities by means of Laumon’s quasiflags’
space Qα. By the definition, it consists of flags

0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ WN = ON
P1 ,

where Wi is a locally free sheaf on P1 of rank i and such that

degWi = −〈α, ω̌i〉.
We shall denote by Qα the corresponding “based” version of Qα.

As before, Qα has a natural action of PGL(2)×G and Qα has a natural action
of Gm × T .

1.3. Geometric interpretation of the “Macdonald function” for G =
SL(N). In the case G = SL(N) we identify Λ+ with NN−1 by using the simple
coroots αi as a basis of Λ. Similarly, we identify Λ̌+ with NN−1 by using the
fundamental weights ω̌i as a basis. Also we have the natural isomorphism T 

GN−1

m .
For any α ∈ Λ+ let us set

(1.1) Jα(q, t, z) = [H•(Qα,Ω•
Qα)] :=

∑
i,j

(−1)i+jtj [Hi(Qα,Ωj
Qα)].

Here [Hi(Qα,Ωj
Qα)] means the character of Hi(Qα,Ωj

Qα) as a representation of
Gm × T ; in other words, it is a function of q ∈ Gm and z ∈ T . More precisely, the
coordinate functions zi, i = 1, . . . , N − 1, satisfy ω̌i = z1 · · · zi.

We would like to organize all the Jα into a generating function. Namely, let us
set:

J(q, t, z, x) =
∑

α∈NN−1

xα
Jα(q, t, z); J(q, t, z, x) =

N−1∏
i=1

x
log(ω̌i)/ log q
i J(q, t, z, x).

Also, for 1 ≤ i ≤ N , we consider the difference operator Ti,q±1 defined as follows:
Ti,q±1F (q, t, z, x1, . . . , xN−1) := F (q, t, z, x1, . . . , xi−2, q

∓1xi−1, q
±1xi, xi+1, . . . ,

xN−1). Our first main result is the following

Theorem 1.4. (1) Define the function zN on the Cartan torus T of SL(N) by
zN := z−1

1 · · · z−1
N−1. Then we have

DJ(q, t, z, x) = (z1 + . . .+ zN )J(q, t, z, x),

where

D :=

N∑
i=1

∏
j<i

1− q−1ti−j−1xj · · ·xi−1

1− ti−jxj · · ·xi−1

∏
k>i

1− qtk−i+1xi · · ·xk−1

1− tk−ixi · · ·xk−1
Ti,q−1

(2)

lim
α→∞

Jα(q, t, z) =
∏

1≤i<j≤N

(qtzj/zi; q)∞
(qzj/zi; q)∞

×
(
(qt; q)∞
(q; q)∞

)N−1

×
N−2∏
i=1

(
(qti+1; q)∞
(ti; q)∞

)N−i−1

.
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Some remarks about 1.4 are in order. First, the operator D is a version of one
of the Macdonald difference operators; it is easy to see that the first assertion of
1.4 implies that J is an eigen-function of all the (suitably normalized) Macdonald
operators and thus (up to some normalization factor) it is equal to the Baker-
Akhiezer function for the Macdonald operators in the terminology of [9] or [7]; it
is also often called the Macdonald function. Moreover, the second assertion can be
deduced from the first one and the results of [9], [7], but we are going to give an
independent proof of this result.

It should also be noted that some limiting cases of 1.4 have been known before.
In particular, the case t = 0 is treated in [3] (cf. also [5] for a generalization to
arbitrary G). Also, in [16] the q → 1 version of 1.4 is proved. It should be noted
that the proofs in loc. cit. are representation-theoretic: they are based on an
interpretation of the (localized) equivariant K-theory (resp. localized equivariant
cohomology) of all the Qα as the universal Verma module for the quantum group
Uq(sl(N)) (resp. of the lie algebra sl(N)). On the other hand, the proof of 1.4 given
in this paper is purely computational: using Atiyah-Bott-Lefschetz localization
formula one can produce a combinatorial expression for the function Jα and thus
reduce 1.4(1) to a combinatorial identity, which can be proven by an explicit (but
fairly long) computation. It would be very interesting to extend the methods of
loc. cit. to the present situation.

1.5. Geometric interpretation of Macdonald polynomials for G =
SL(N). The Macdonald operators are usually used in order to define the so called
Macdonald polynomials. This is a series of W -invariant polynomials Pλ̌(q, t, z) on

the torus T (recall that z ∈ T ) depending on a dominant weight λ̌ ∈ Λ̌+ and
on the variables q, t ∈ Gm. We would like to present a geometric construction of
these polynomials. Let us explain how to do it in the SL(N)-case. The conjectural
generalization to arbitrary G is discussed in the next Subsection.

First, for any λ̌ ∈ Λ̌ one can construct a line bundle O(λ̌) on QMα; abusing the
notation we are going to denote its pull-back to Qα also by O(λ̌). The construction
is discussed in [5]. We are not going to recall the construction in the Introduction,
but let us just note that it requires a choice of a point ∞ ∈ P1. Hence, the bundle
O(λ̌) is not PGL(2)-equivariant. However, it is still equivariant with respect to
the diagonal torus Gm ⊂ PGL(2). In particular, it makes sense to consider the
character of H•(Qα,Ω•

Qα ⊗ O(λ̌)) with respect to the action of Gm ×G, which we

shall denote by [H•(Qα,Ω•
Qα ⊗ O(λ̌))]. By definition this character is W -invariant

function on Gm × T .

Theorem 1.6. (1) Assume that λ̌ ∈ Λ̌ is not dominant. Fix j, k ∈ N. Then
for α sufficiently large we have

Hk(Qα,Ωj
Qα ⊗ O(λ̌)) = 0.

(2) For any λ̌ ∈ Λ̌ there exists the limit lim
α→∞

[H•(Qα,Ω•
Qα ⊗ O(λ̌))]. We shall

denote the above limit by Hλ̌(q, t, z). Note that it follows from the first assertion

that Hλ̌ = 0 when λ̌ is not dominant.
(3)

H0(q, t, z) =
(1 + t)(1 + t+ t2) . . . (1 + t+ . . .+ tN−1)

(1− tN−1)2(1− tN−2)4 . . . (1− t3)2N−6(1− t2)2N−4
· 1

(1− tN )(1− t)N−2
.
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(4) For any λ̌ =
∑

liω̌i ∈ Λ̌+ (here ω̌i denotes the i-th fundamental weight of
SL(N)) we have

Hλ̌ = H0

∏
1≤i≤j≤N−1

(tj−i+1; q)li+...+lj

(tj−iq; q)li+...+lj

Pλ̌.

In other words, Hλ̌ is equal to Pλ̌ up to an explicit factor.

1.7. The case of arbitrary G. In this subsection we are going to give a
conjectural formulation1 of 1.6 for arbitrary G. The formulation is based on the
theory of perverse coherent sheaves developed by D. Arinkin and R. Bezrukavnikov
(cf. [1]). For simplicity, in this Introduction we shall assume that G is simply laced
(in the general case certain modification of the construction given below is needed;
the details are explained in 8).

First let us introduce the infinite type scheme gQ (discussed also in [6, Sec-
tion 2.2]): it is the quotient by the action of the Cartan torus T ⊂ G of the space of

maps from SpecR = SpecC[[t−1]] to the affinization of the base affine space G/U−
taking value in G/U− at the generic point. This scheme is equipped with the ac-
tion of the proalgebraic group G(R); the open orbit gQ∞ = gQ

0 is nothing but
G(R)/T · U−(R): the maps taking value in G/U− at the closed point r ∈ SpecR.
We denote by j the open embedding of gQ

0 into gQ. All the G(R)-orbits in gQ
are numbered by the defects at r taking value in the cone of positive coroots Λ+ of
G : gQ =

⊔
α∈Λ+

gQ
α. The codimension of gQ

α in gQ equals 2|α|.
We introduce the perversity p( gQ

α) = |α|; it is immediate that the function p is
strictly monotone and comonotone in the sense of [1]. For a locally free G(R)�Gm-
equivariant sheaf F on gQ

0 the construction of [1, Section 4] produces an object
j!∗F of G(R)�Gm-equivariant quasicoherent derived category on gQ.

Conjecture 1.8. (a) For a nondominant G-weight λ̌ we have [H•(gQ, j!∗(Ω
•
gQ0)

⊗O(λ̌))] = 0.
(b) For a dominant G-weight λ̌ we have

[H•(gQ, j!∗(Ω
•
gQ0)⊗ O(λ̌))] = H0

∏
α∈R+(ǧ)

(t|α|; q)〈α,λ̌〉

(t|α|−1q; q)〈α,λ̌〉

∏ (t|α|−1; q)∞
(qt|α|; q)∞

Pλ̌

where Pλ̌(q, t, z) is the Macdonald polynomial for G, and the second product is taken
over all nonsimple positive roots of R+(ǧ).

We explain in 8 why 1.8 is equivalent to 1.6 for G = SL(N).

1.9. Organization of the paper. In 2 and 3 we gather some combinatorial
information about Macdonald polynomials and the “Macdonald function” for root
systems of type A. In 4 we prove a generalization of the Sommese vanishing theorem,
which in particular implies 1.6(1). In 6 and 7 we prove 1.4 and 1.6. Finally, in 8
we give a careful formulation of 1.8 for arbitrary G and show that for G = SL(N)
it is equivalent to 1.6.

1The reader should be warned that we do not know how to formulate a version of 1.4 for
arbitrary G.
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2. Combinatorial notations

2.1. Macdonald polynomials. We follow the notations in [15] (especially,
part VI), cf. also [17]. Let N be a positive integer and q, t be independent inde-
terminates. Let ΛN,F be the ring of symmetric polynomials in N variables with
coefficients in F = Q(q, t). Set

Tq,yi
f(y1, . . . , yN ) = f(y1, . . . , qyi, . . . , yN ).(2.1)

For a partition λ, the Macdonald polynomial Pλ(y; q, t) ∈ ΛN,F is uniquely
characterized by the conditions:

Pλ = mλ +
∑
μ<λ

uλμmμ,(2.2)

D1
NPλ =

N∑
i=1

qλitN−i · Pλ,(2.3)

where mλ is the monomial symmetric function, and D1
N = D1

N (q, t) is the Macdon-
ald difference operator

D1
N =

N∑
i=1

∏
j 
=i

tyi − yj
yi − yj

Tq,yi
.(2.4)

2.2. Tableau. Let λ = (λ1, λ2, · · · ), μ = (μ1, μ2, · · · ) be partitions satisfying
μ ⊂ λ. The necessary and sufficient condition for the skew diagram θ = λ − μ to
be a horizontal strip is

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · .(2.5)

This can be written as

0 ≤ λi − μi ≤ λi − λi+1 (i ≥ 1).(2.6)

A (column-strict) tableau T of shape λ is defined to be a sequence of partitions

φ = λ(0) ⊂ λ(1) ⊂ · · ·λ(N) = λ(2.7)

such that every skew diagram θ(i) = λ(i) − λ(i−1) is a horizontal strip. Writing

λ(i) = (λ
(i)
1 , λ

(i)
2 , · · · ), the condition for the T being a tableau reads

0 ≤ λ
(j)
i − λ

(j−1)
i ≤ λ

(j)
i − λ

(j)
i+1 (1 ≤ i, 1 ≤ j ≤ N).(2.8)

Note that from λ(0) = φ and the inequality (2.8) we have

λ
(j)
i = 0 (i > j).(2.9)

For each skew diagram θ(i) = λ(i) − λ(i−1), set

θi,j = λ
(j)
i − λ

(j−1)
i (1 ≤ i ≤ N, 1 ≤ j ≤ N),(2.10)

for simplicity of display. Then the constraint (2.9) means

θi,j = 0 (i > j),(2.11)

λi =

N∑
k=i

θi,k (1 ≤ i ≤ N).(2.12)
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Hence the tableau T uniquely gives us a set of N(N−1)/2 nonnegative integers
{θi,j |1 ≤ i < j ≤ N} satisfying (2.8), namely

0 ≤ θi,j ≤ λi − λi+1 −
N∑

k=j+1

(θi,k − θi+1,k) (1 ≤ i < j ≤ N).(2.13)

Conversely, a set of nonnegative integers {θi,j} satisfying (2.13) uniquely gives us

a sequence of partitions λ(j) = (λ
(j)
1 , λ

(j)
2 , . . .)

λ
(j)
i =

j∑
k=1

θi,k,(2.14)

which is a tableau.
It is convenient to consider a set of N × N upper triangular matrices M(N)

having {θi,j}’s as nonzero entries, and zeros on the diagonal:

M(N) = {θ = (θi,j)1≤i,j≤N |θi,j ∈ Z≥0, θi,j = 0 if i ≥ j}.(2.15)

We have a natural projection M(N) → M(N−1) forgetting the last column.

Lemma 2.3. Let λ = (λ1, . . . , λN ) be a partition. We have a one to one mapping
from the set of (column-strict) tableaux of shape λ to the elements in the polyhedral
region Polλ ∈ M(N) defined by

Polλ = {θ ∈ M(N)|0 ≤ θi,j ≤ λi − λi+1 −
N∑

k=j+1

(θi,k − θi+1,k)}.(2.16)

Lemma 2.4. The size of the skew diagram θ(i) = λ(i) − λ(i−1) is written as

|θ(i)| = λi +
i−1∑
a=1

θa,i −
N∑

b=i+1

θi,b.(2.17)

2.5. Tableaux sum formula. We recall the tableaux sum formula for the
Macdonald polynomials.

The Macdonald polynomial Pλ is written as

Pλ =
∑
T

ψT (q, t)y
T .(2.18)

where T runs over the set of tableaux of shape λ, yT denotes the monomial defined
in terms of the weights α = (|θ(1)|, |θ(2)|, . . . , |θ(N)|) of T as

yT = yα = yλ
∏

1≤i<j≤N

(yj/yi)
θi,j ,(2.19)

and the coefficient ψT (q, t) is given by

ψT (q, t) =
N∏
i=1

ψλ(i)/λ(i−1)(q, t),(2.20)

ψλ/μ =
∏

1≤i≤j≤�(μ)

f(qμi−μj tj−i)f(qλi−λj+1tj−i)

f(qλi−μj tj−i)f(qμi−λj+1tj−i)
,(2.21)

f(u) =
(tu; q)∞
(qu; q)∞

.(2.22)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MACDONALD POLYNOMIALS, LAUMON SPACES, PERVERSE COHERENT SHEAVES 29

For a nonnegative integer θ ∈ Z≥0, we have

f(u)

f(q−θu)
=

(q−θ+1u; q)θ
(q−θtu; q)θ

= (q/t)θ
(1/u; q)θ
(q/tu; q)θ

.

where (p; q)n := (1− p)(1− qp) . . . (1− qn−1p). Hence we have

ψT (q, t)

=

N∏
k=1

∏
1≤i≤j≤k−1

f(qλ
(k−1)
i −λ

(k−1)
j tj−i)f(qλ

(k)
i −λ

(k)
j+1tj−i)

f(qλ
(k)
i −λ

(k−1)
j tj−i)f(qλ

(k−1)
i −λ

(k)
j+1tj−i)

(2.23)

=
N∏

k=1

∏
1≤i≤j≤k−1

f(q−θi,k+λ
(k)
i −λ

(k−1)
j tj−i)f(qλ

(k)
i −λ

(k)
j+1tj−i)

f(qλ
(k)
i −λ

(k−1)
j tj−i)f(q−θi,k+λ

(k)
i −λ

(k)
j+1tj−i)

=

N∏
k=1

∏
1≤i≤j≤k−1

(q−λ
(k)
i +λ

(k−1)
j +1t−j+i−1; q)θi,k

(q−λ
(k)
i +λ

(k−1)
j t−j+i; q)θi,k

(q−λ
(k)
i +λ

(k)
j+1t−j+i; q)θi,k

(q−λ
(k)
i +λ

(k)
j+1+1t−j+i−1; q)θi,k

.

3. Macdonald function

3.1. Multiple hypergeometric-type series. Let q, t, z1, z2, . . . , zN be in-
dependent indeterminates. Recall the projection M(N) → M(N−1), see the line af-
ter (2.15). Define a sequence of rational functions cN (θ; z1, . . . , zN ; q, t) ∈ Q(q, t, z1,
. . . , zN ) inductively as follows:

c1(−; z1; q, t) = 1,(3.1)

cN (θ ∈ M(N); z1, . . . , zN ; q, t)

= cN−1(θ ∈ M(N−1); q−θ1,N z1, . . . , q
−θN−1,N zN−1; q, t)(3.2)

×
∏

1≤i≤j≤N−1

(tzj+1/zi; q)θi,N
(qzj+1/zi; q)θi,N

(q−θj,N qzj/tzi; q)θi,N
(q−θj,N zj/zi; q)θi,N

.

This can be written explicitly as

cN (θ; z1, . . . , zN ; q, t)

(3.3)

=
N∏

k=2

∏

1≤i≤j≤k−1

(q
∑N

a=k+1(θi,a−θj+1,a)tzj+1/zi; q)θi,k

(q
∑N

a=k+1
(θi,a−θj+1,a)qzj+1/zi; q)θi,k

(q−θj,k+
∑N

a=k+1(θi,a−θj,a)qzj/tzi; q)θi,k

(q
−θj,k+

∑N
a=k+1

(θi,a−θj,a)
zj/zi; q)θi,k

=

=
∏

1≤i<j≤N

(q/t)θi,j
(t; q)θij (q

∑N
a=j+1(θia−θja)tzj/zi; q)θij

(q; q)θij (q
1+

∑N
a=j+1(θia−θja)zj/zi; q)θij

×

N∏

k=3

∏

1≤l<m<k

(q/t)θl,k
(q

∑N
b=k+1(θlb−θmb)tzm/zl; q)θlk (q

−θlk+θmk−
∑N

b=k+1(θlb−θmb)tzl/zm; q)θlk

(q
1+

∑N
b=k+1

(θlb−θmb)zm/zl; q)θlk (q
1−θlk+θmk−

∑N
b=k+1

(θlb−θmb)zl/zm; q)θlk
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3.2. Example.

c2 =
(tz2/z1; q)θ1,2
(qz2/z1; q)θ1,2

(q−θ1,2q/t; q)θ1,2
(q−θ1,2 ; q)θ1,2

=
(tz2/z1; q)θ1,2
(qz2/z1; q)θ1,2

(t; q)θ1,2
(q; q)θ1,2

(q/t)θ1,2 ,(3.4)

c3 =
(qθ1,3−θ2,3tz2/z1; q)θ1,2
(qθ1,3−θ2,3qz2/z1; q)θ1,2

(q−θ1,2q/t; q)θ1,2
(q−θ1,2 ; q)θ1,2

(3.5)

×
(tz2/z1; q)θ1,3
(qz2/z1; q)θ1,3

(q−θ1,3q/t; q)θ1,3
(q−θ1,3 ; q)θ1,3

(tz3/z1; q)θ1,3
(qz3/z1; q)θ1,3

(q−θ2,3qz1/tz2; q)θ1,3
(q−θ2,3z1/z2; q)θ1,3

×
(tz3/z2; q)θ2,3
(qz3/z2; q)θ2,3

(q−θ2,3q/t; q)θ2,3
(q−θ2,3 ; q)θ2,3

.

Lemma 3.3. Let λ = (λ1, λ2, . . .) be a partition satisfying 	(λ) ≤ N . The sub-
stitution zi = tN−iqλi (1 ≤ i ≤ N) in cN (θ; z1, . . . , zN ; q, t) gives us the coefficient
ψT in the tableau sum formula

ψT (q, t) = cN (θ; tN−1qλ1 , . . . , qλN ; q, t).(3.6)

Let y = (y1, . . . , yN ), z = (z1, . . . , zN ) be two sets of independent indetermi-
nates. Set

zi = tN−iqλi (1 ≤ i ≤ N).(3.7)

For simplicity we use the notation

yλ =
∏
i

yλi
i .(3.8)

Note that we have

Tq,yi
yλ = ti−Nzi · yλ.(3.9)

Definition 3.4. Define a formal power series fN (y, z; q, t) ∈ yλF(z)[[yi+1/yi,
(i = 1, . . . , N − 1)]] by

fN (y, z; q, t) = yλ
∑

θ∈M(N)

cN (θ; z; q, t)
∏

1≤i<j≤N

(yj/yi)
θi,j .(3.10)

3.5. Termination of the series fN (y, z; q, t). Let λ = (λ1, λ2, . . . , λN ) be a
partition, while keeping q, t being generic. Note that we have the following factor
in the numerator of cN (θ; z1, . . . , zN ; q, t):

N−1∏
k=1

k∏
1=1

(q
∑N

a=k+1(θi,a−θi+1,a)tzi+1/zi; q)θi,k =

N−1∏
k=1

k∏
1=1

(q
∑N

a=k+1(θi,a−θi+1,a)qλi+1−λi ; q)θi,k .

(3.11)

This vanishes unless the following set of inequalities are satisfied:

0 ≤ θi,k ≤ λi − λi+1 −
N∑

a=k+1

(θi,a − θi+1,a) (1 ≤ i < k ≤ N).(3.12)

Namely we have the vanishing of the coefficient cN (θ; z1, . . . , zN ; q, t)’s unless θ ∈
Polλ ⊂ M(N). Hence we find that under the specialization in z, the infinite series
fN (y, z; q, t) terminates into a finite one.
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Proposition 3.6. Let λ = (λ1, λ2, . . . , λN ) be a partition, and set zi = tN−iqλi .
Then we have

fN (y, z; q, t) = yλ
∑

θ∈Polλ

cN (θ; z; q, t)
∏

1≤i<j≤N

(yj/yi)
θi,j(3.13)

=
∑
T

ψT (q, t)y
T = Pλ(y, q, t).

Proposition 3.7. Let y = (y1, . . . , yN ) and z = (z1, . . . , zN ) be generic. We
have

D1
N,yfN (y, z; q, t) =

N∑
i=1

zi · fN (y, z; q, t).(3.14)

Lemma 3.8. Let u(z1, . . . , zN )∈F[z1, z2, . . . , zN ]. If we have u(tN−1qλ1 , tN−2qλ2 ,
. . . , qλN ) = 0 for any partition λ = (λ1, λ2, . . . , λN ), then u(z1, . . . , zN ) = 0.

Proof. We prove this by the induction on N . When N = 1, it is true. Assume
it holds for N − 1. Expand u(z1, . . . , zN ) =

∑
k uk(z2, . . . , zN )zk1 . Fix λ2, . . . , λN

and vary λ1(≥ λ2), then all the coefficients of zk1 , i.e. uk(t
N−2qλ2 , tN−3qλ3 , . . . , qλN )

should vanish. Now we let λ2, . . . , λN vary and conclude that uk(z2, . . . , zN ) = 0
by the assumption. �

Proof of 3.7. Set

y−λ(LHS(3.14)− RHS(3.14))

=
∑

k1,...,kN−1≥0

rk1,...,kN−1
(z)

N−1∏
i=1

(yi+1/yi)
ki ∈ F(z)[[yi+1/yi, (i = 1, 2, . . . , N − 1)]].

From 3.6 and 3.8, we have rk1,...,kN−1
(z) = 0 for all k1, . . . , kN−1 ≥ 0. �

4. Vanishing

4.1. Sommese vanishing. We need the following version of Sommese van-
ishing theorem. Let p : X → Y be a flat morphism between smooth projective
complex varieties. Let L be a line bundle on X whose restriction to every fiber of p
is l-ample [8, Definition 6.5] for certain l ∈ N. Also, suppose the Iitaka dimension
κ(Ly) [8, Definition 5.3] of the restriction of L to every fiber Xy = p−1(y), y ∈ Y ,
equals dimXy = dimX−dimY . Finally, suppose dimX−dimY − l > M for some
M ∈ N.

Theorem 4.2. Under the above assumptions, Hi(X,Ωj
X⊗L−1) = 0 for i+j <

M .

Proof. By the Leray spectral sequence, it suffices to prove Rip∗(Ω
j
X⊗L−1) =

0 for i + j < M . First, we restrict to a nonempty open U ⊂ Y over which p is
smooth. We set XU = p−1(U). Then Ωj

XU
has a filtration whose associated graded

bundle is a direct sum of the sheaves Ωk
XU/U ⊗ p∗Ωj−k

U over k ≤ j. Here Ωk
XU/U

is the bundle of relative k-forms. By the projection formula it suffices to prove
Rip∗(Ω

k
XU/U ⊗ L−1) = 0 for i + k < M . By the base change, it suffices to know

for any y ∈ U that Hi(Xy,Ω
k
Xy

⊗L−1) = 0 for i+ k < M . But this is nothing but

Sommese vanishing [8, Corollary 6.6] on the smooth projective variety Xy. So we

conclude Rip∗(Ω
j
X ⊗ L−1)|U = 0 for i+ j < M .
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Now to prove Rip∗(Ω
j
X ⊗ L−1) = 0 for i + j < M it suffices to know that

Rip∗(Ω
j
X ⊗ L−1) has no torsion for i + j < M . We will prove this by induction

in dimY and the dimension of the support of torsion. Let Z ⊂ Y be the support
of Rip∗(Ω

j
X ⊗ L−1). Suppose dimZ > 0. Then according to Kleiman’s generic

transversality theorem [13] there exists a hyperplane section Y ′ ⊂ Y intersecting
Z transversally at a smooth point z ∈ Z and such that X ′ := p−1(Y ′) is smooth.

By the base change, the support of Rip∗(Ω
j
X ⊗ L−1|X′) contains Z ′ defined as the

irreducible component of Z ∩Y ′ containing z. However, we have an exact sequence
of vector bundles on X ′:

0 → N∗
X′/X ⊗ Ωj−1

X′ → Ωj
X |X′ → Ωj

X′ → 0

and the conormal bundle N∗
X′/X = p∗N∗

Y ′/Y . By the projection formula and by

the induction (in dimY ) assumption we have Rip∗(N
∗
X′/X ⊗ Ωj−1

X′ ⊗ L−1) = 0 =

Rip∗(Ω
j
X′ ⊗L−1) for i+ j < M . Hence Rip∗(Ω

j
X |X′ ⊗L−1) = 0 which contradicts

to Z ′ �= ∅.
It remains to establish the base of induction: dimZ = 0. We choose the minimal

i0 among all i such that Rip∗(Ω
j
X ⊗ L−1) �= 0 for some j such that i + j < M .

Let y ∈ Z ⊂ Y be a point in the (finite) support of Ri0p∗(Ω
j
X ⊗ L−1). Let us

choose a sufficiently ample line bundle M on Y . Then by the projection formula
Rip∗(Ω

j
X ⊗ (L ⊗ p∗M)−1) = Rip∗(Ω

j
X ⊗ L−1) ⊗ M−1, and by the Leray spectral

sequence Hi0(X,Ωj
X ⊗ (L ⊗ p∗M)−1) �= 0 (the LHS contains a direct summand

Ri0p∗(Ω
j
X ⊗L−1)y ⊗M−1

y ). However, by the Sommese vanishing [8, Corollary 6.6]
applied to the line bundle L ⊗ p∗M on X (with M sufficiently ample), we must

have Hi0(X,Ωj
X ⊗ (L ⊗ p∗M)−1) = 0. This contradiction proves we cannot have

dimZ = 0.
This completes the proof of the theorem. �

5. Parabolic Laumon spaces

Recall the notations of [6]. We denote by QMα the Drinfeld moduli space of
degree α quasimaps from C 
 P1 to the flag variety B = G/B of G = SL(N).
Here α = (d1, . . . , dN−1) ∈ NN−1. We denote by πα : Qα → QMα the Laumon
resolution of QMα [14]. Given a subminimal parabolic (with Levi of semisimple
rank 1) SL(N) ⊃ P = Pi ⊃ B we consider the corresponding parabolic Laumon
space Qᾱ

P (see e.g. [4]), and the natural projection �α : Qα → Qᾱ
P . Here ᾱ :=

(d1, . . . , di−1, di+1, . . . , dN−1).
Recall [6] that Vω̌i

= ΛiCN , 1 ≤ i ≤ N − 1, are the fundamental SL(N)-
modules, and QMα is equipped with a closed embedding ψα : QMα ↪→

∏
i∈I PΓ

(C, Vω̌i
⊗O(〈α, ω̌i〉)). Given an SL(N)-weight λ̌ =

∑
i∈I diω̌i ∈ Λ∨ we define a line

bundle O(λ̌)α on QMα
g as ψ∗

α

⊗
i∈I O(di). Suppose λ̌ is not dominant, i.e. li < 0

for some 1 ≤ i ≤ N − 1. We fix such an i from now on, and we set L := π∗
αO(−λ̌).

For y ∈ Qᾱ
P we denote by Xy the fiber �−1

α (y) with the reduced scheme structure.
Our aim is to study the ampleness properties of the line bundle Ly := L|Xy

. They
are summarized in the following

Proposition 5.1. (a) Ly is generated by the global sections, and gives rise to

a morphism φ : Xy → P(Γ∗(Xy,Ly)). We denote by Xy the image of φ (with the
reduced closed subscheme structure).
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(b) The morphism Xy
φ−→ Xy equals Xy

πα−→ πα(Xy), where πα(Xy) ⊂ QMα

is equipped with the reduced closed subscheme structure.
(c) For a fixed ᾱ and di � 0 we have dimXy = dimXy = 2di−di−1−di+1+1;

in particular, �α is flat.
(d) Let ly := max{dimφ−1(z), z ∈ Xy}. For a fixed ᾱ and M ∈ N, there exists

Di such that for di > Di and any y ∈ Qᾱ
P we have dimXy − ly > M .

Proof. (a) and (b) are clear from definitions. A point y ∈ Qᾱ
P is represented

by a collection of locally free subsheaves 0 = W0 ⊂ W1 ⊂ . . . ⊂ Wi−1 ⊂ Wi+1 ⊂
. . . ⊂ WN−1 ⊂ WN = ON

C such that rkWj = j, and degWj = −dj . The fiber

Xy is the moduli space of subsheaves Wi ⊂ Wi+1
i−1 := Wi+1/Wi−1 of generic rank 1

and degree di−1 − di. For such a sheaf Wi we denote by Wi its saturation i.e. the
maximal subsheaf ofWi+1

i−1 containingWi, of generic rank 1, and such thatWi+1
i−1/Wi

has no torsion. We also define the defect defWi as the cycle of the torsion sheaf
Wi/Wi. Two points Wi,W

′
i are in the same fiber of φ = πα|Xy

iff their saturations
and defects coincide. In particular, φ is one-to-one when restricted to the open
subset U ⊂ Xy formed by all the saturated Wi.

To prove (c) we must check that U is nonempty for di � 0. This is evi-
dent. To finish the proof of (c) it remains to compute dimU . Let us decompose
Wi+1

i−1 
 (Wi+1
i−1)

tors ⊕ (Wi+1
i−1)

free into a direct sum of a torsion sheaf and a locally

free sheaf. Then a point of U is represented by Wi 
 (Wi+1
i−1)

tors ⊕ Wfree
i where

Wfree
i ⊂ (Wi+1

i−1)
free is a line subbundle of degree di−1 − di −dim(Wi+1

i−1)
tors. Locally

around Wi, U is isomorphic to PHom(Wfree
i ,Wi+1

i−1). For di � 0 the latter space is

P2di−di−1−di+1+1 which completes the proof of (c).

To prove (d) we fix a saturated subsheaf Wi = Wtors
i ⊕ Wfree

i , and a defect
δ ∈ C(d). We have to estimate the dimension of the moduli space φ−1(z) of sub-

sheaves Wi ⊂ Wi+1
i−1 with given saturation Wi and defWi = δ. If W

prfr

i stands

for the image of projection of Wi to Wfree
i along Wtors

i , then there are finitely

many possible values of W
prfr

i ⊂ Wfree
i ; more precisely, not more than τ τ where

τ = dim(Wi+1
i−1)

tors (the only ambiguity in the choice of W
prfr

i ⊂ Wfree
i can occur at

the support of (Wi+1
i−1)

tors). Now for a fixed value of W
prfr

i ⊂ Wfree
i the dimension

of the corresponding stratum of the moduli space in question is independent of di.
Hence, with di growing, dimXy − dimφ−1(z) grows uniformly in y and z.

The proposition is proved. �

5.2. Vanishing Theorem. We combine 5.1 and 4.2 setting Y = Qᾱ
P , X =

Qα, p = �α, L = O(−λ̌). We arrive at the following

Theorem 5.3. Let λ̌ =
∑N−1

i=1 liω̌i be a non-dominant weight, i.e. li < 0 for
certain 1 ≤ i ≤ N − 1. We fix j, k ∈ N and ᾱ = (d1, . . . , di−1, di+1, . . . , dN−1).

Then for di � 0 we have Hk(Qα,Ωj
Qα ⊗ O(λ̌)) = 0. �

6. Euler characteristics of twisted De Rham complexes

6.1. Generating functions. For a weight λ̌ we consider χ(H•(Qα,Ω•
Qα ⊗

O(λ̌))) as a virtual gradedGm×T -module. Here T is the Cartan torus of SL(N), and
the grading is via De Rham degree Ω•

Qα . The generating function of its character

is [H•(Qα,Ω•
Qα ⊗O(λ̌))] :=

∑
i,j(−1)i+jtj [Hi(Qα,Ωj

Qα ⊗O(λ̌))] a function of q, t, z
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where q is the coordinate on Gm, and z are the coordinates on T . We define
Hλ̌(q, t, z) as the limit of [H•(Qα,Ω•

Qα ⊗ O(λ̌))] as α → ∞. We will see that the
limit exists as a formal series in q, t, z converging to a rational function in q, t, z.
For instance, if λ̌ is not dominant, then according to 5.3, Hλ̌(q, t, z) = 0.

6.2. Betti cohomology of Laumon spaces. We start with a computation
of H0(q, t, z).

Proposition 6.3.

H0(q, t, z) =
(1 + t)(1 + t+ t2) . . . (1 + t+ . . .+ tN−1)

(1− tN−1)2(1− tN−2)4 . . . (1− t3)2N−6(1− t2)2N−4
· 1

(1− tN )(1− t)N−2
.

Proof. According to [11, Theorem 2.9], the Betti cohomology H•(Qα,C) car-

ries a Tate Hodge structure, so Hi(Qα,Ωj
Qα) = 0 unless i = j, while Hi(Qα,Ωi

Qα) =
H2i(Qα,C). The action of Gm×T on the latter space is clearly trivial, so H0(q, t, z)
= H0(t) is the α → ∞ limit of Poincaré polynomials Pα(t) :=

∑
i t

i dimH2i(Qα,C).
Now Pα(t) is calculated in [11, Theorem 2.7] (under the perverse normalization).
The α → ∞ limit P∞(t) is the product W (t) · F (t) where W (t) is the Poincaré
polynomial of the flag variety B, that is W (t) = N !t = (1 + t)(1 + t + t2) . . . (1 +
t+ . . .+ tN−1). Furthermore, F (t) =

∑
Fit

i where Fi is the number of unordered
collections of positive roots α1, . . . , αk, β1, . . . , βm ∈ R+(slN ) such that none of

α1, . . . , αk is simple, and
∑k

j=1(|αj | − 1) +
∑m

l=1(|βl|+ 1) = i. Here |β| := (β, ρ).
The proposition follows. �

6.4. Local Laumon spaces. Recall that Qα ⊂ Qα is a locally closed local
Laumon moduli space of quasiflags based at ∞ ∈ C, see e.g. [10]. Similarly to
Section 6.1 we introduce the generating function Jα(q, t, z) = [H•(Qα,Ω•

Qα)] :=∑
i,j(−1)i+jtj [Hi(Qα,Ωj

Qα)]. We compute the Euler characteristic ofH•(Qα,Ω•
Qα)

via the Atiyah-Bott-Lefschetz localization to the fixed points of Gm×T in Qα. The
characters of Gm × T in the tangent spaces of the fixed points are computed in [3,
Proposition 2.18a]. To write down the answer we recall the necessary notation. The

fixed points are numbered by the collections d̃ = (dij)N−1≥i≥j≥1 such that dij ≤ dkj
for i ≥ k ≥ j, and di,1 + di,2 + . . . + di,i = di (recall that α = (d1, . . . , dN−1)).
For 1 ≤ k < l ≤ N we set θkl = dl−1,k − dlk where dNk := 0. Conversely,

dij = θj,i+1 + θj,i+2 + . . . + θj,N . Recall the set M(N) introduced in (2.15). Let xi

stand for the character of the dual torus Ť corresponding to the simple coroot αi.
For α ∈ NN−1 the corresponding character of Ť is denoted by xα. We consider the
formal generating function

J(q, t, z, x) =
∑

α∈NN−1

xα
Jα(q, t, z).

Now

(6.1) J(q, t, z, x) =
∑

(θij)∈M(N)

C(θij)(q, t, z)
∏

1≤i<j≤N

(xi · · ·xj−1)
θij
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where

C(θij)(q, t, z) =
∏

1≤i<j≤N

(qt; q)θij (q
1+

∑N
a=j+1(θia−θja)tzj/zi; q)θij

(q; q)θij (q
1+

∑N
a=j+1(θia−θja)zj/zi; q)θij

×

(6.2)

N∏
k=3

∏
1≤l<m<k

(q1+
∑N

b=k+1(θlb−θmb)tzm/zl; q)θlk(q
1−θlk+θmk−

∑N
b=k+1(θlb−θmb)tzl/zm; q)θlk

(q1+
∑N

b=k+1
(θlb−θmb)zm/zl; q)θlk(q

1−θlk+θmk−
∑N

b=k+1
(θlb−θmb)zl/zm; q)θlk

— this is a restatement of [3, Proposition 2.18a].

6.5. Local stabilization. We will prove that as α → ∞, the series Jα(q, t, z)
tends to the limit J∞(q, t, z). More precisely, for any n,m ∈ N the coefficient of
qntm in Jα(q, t, z) for α � 0 is independent of α. The resulting series will be
denoted by J∞(q, t, z). The existence of the limit and computation of its value
follows from 7.2 below and [7, Proposition 3.11]. For the reader’s convenience we
present a more elementary computation of the limit.

We introduce a function zN on the Cartan torus T of SL(N) defined as zN :=
z−1
1 · · · z−1

N−1.

Theorem 6.6.

lim
α→∞

Jα(q, t, z) =
∏

1≤i<j≤N

(qtzj/zi; q)∞
(qzj/zi; q)∞

×
(
(qt; q)∞
(q; q)∞

)N−1

×
N−2∏
i=1

(
(qti+1; q)∞
(ti; q)∞

)N−i−1

.

Proof. Let α =
∑N−1

i=1 	iαi, 	i ∈ N. We study the stabilization of Jα(q, t, z)
in the sector 	1 � 	2 � · · · � 	N−1 � 0. Note that we can recast the coefficient
C(θi,j)(q, t, z) as follows:

C(θi,j)(q, t, z) =
∏

1≤i<j≤N

(qt; q)θi,j
(q; q)θi,j

(qtzj/zi; q)θi,N
(qzj/zi; q)θi,N

×
N∏

k=3

Fk,

Fk =
∏

1≤l<m<k

(qσl,k−σm,kqtzm/zl; q)θl,k−1

(qσl,k−σm,kqzm/zl; q)θl,k−1

(q−σl,k+σm,kqtzl/zm; q)θl,k
(q−σl,k+σm,kqzl/zm; q)θl,k

,

σl,k =

N∑
b=k

θl,b.

Define F (n) (0 ≤ n ≤ N − 1) recursively by setting F (0) = C(θi,j)(q, t, z),

F (1) = lim
�1→∞

∑
θ1,2≥0

�1=σ1,2

F (0), F (2) = lim
�2→∞

∑
θ1,3,θ2,3≥0

�2=σ1,3+σ2,3

F (1), . . . ,

F (n) = lim
�n→∞

∑
θ1,n+1,...,θn,n+1≥0

�n=σ1,n+1+···+σn,n+1

F (n−1), . . . ,

F (N−1) = lim
�N−1→∞

∑
θ1,N ,...,θN−1,N≥0

�N−1=θ1,N+···+θN−1,N

F (N−2).

Then the coefficient we are interested in is F (N−1). The stabilization of F (N−1)

can be studied and stated explicitly as follows. �
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Lemma 6.7. For n = 1, . . . , N − 2, we have

F (n) =
∏

1≤i<j≤n+1

(qt; q)∞
(q; q)∞

(qtzj/zi; q)θi,N
(qzj/zi; q)θi,N

×

×
(

(q; q)∞
(qt; q)∞

)(n
2 ) n−1∏

i=1

(
(qti+1; q)∞
(ti; q)∞

)n−i

×

×
∑

(θi,j )j≥n+2
�i=σ1,i+1+···+σi,i+1 (n+1≤i≤N−1)

∏
1≤i<j≤N
n+2≤j

(qt; q)θi,j
(q; q)θi,j

(qtzj/zi; q)θi,N
(qzj/zi; q)θi,N

×
N∏

k=n+2

Fk,

and

F (N−1) =
∏

1≤i<j≤N

(qtzj/zi; q)∞
(qzj/zi; q)∞

×
(
(qt; q)∞
(q; q)∞

)N−1

×
N−2∏
i=1

(
(qti+1; q)∞
(ti; q)∞

)N−i−1

.

Proof. We prove the statement by the recursive use of the summation formula
associated with the root lattice of type An [12, the table at p. 136 and references
therein]:

∑
χ∈Q

∏
α∈R

(q1+〈α,χ〉tzα; q)∞
(q1+〈α,χ〉zα; q)∞

=
∏
α>0

(qt〈ρ,α〉+1; q)∞(qδαt〈ρ,α〉−1; q)∞
(qt〈ρ,α〉; q)∞(t〈ρ,α〉; q)∞

=

(
(q; q)∞
(qt; q)∞

)n−1 n−1∏
i=1

(qti+1; q)∞
(ti; q)∞

,

where 2ρ =
∑

α>0 α, δα = 1 if α is a simple root and δα = 0 otherwise.

It is clear that we have F (1) by taking the limit 	1 → ∞, namely letting
θ1,2 → ∞ while fixing all the other θi,j ’s. The passage from F (n) to F (n+1) can be
studied as follows. We need to take the limit 	n → ∞ and perform the (n − 1)-
dimensional summation with respect to the variables θ1,n+1, . . . , θn,n+1 with the
constraint 	n = σ1,n+1 + · · · + σn,n+1. It can be easily shown that, the most
dominating terms, as a Taylor series in q and t, come from the vicinity of σl,n+1 −
σm,n+1 ∼ 0 (1 ≤ l < m ≤ n). Therefore the dominating contributions come from
θ1,n+1, . . . , θn,n+1 � 0. Hence the (n− 1)-dimensional summation can be taken by
using the above mentioned summation formula for type An.

This completes the proof of the theorem. �

6.8. From local to global Laumon spaces. The following lemma is very
similar to [6, Lemma 4.2]:

Lemma 6.9.

[H•(Qα,Ω•
Qα ⊗ O(λ̌))] =

∑
γ+β=α
w∈W

zwλ̌q〈γ,λ̌〉Jγ(q
−1, t, wz)Jβ(q, t, wz)

∏
α̌∈Ř+

1− twzα̌

1− wzα̌
.

Proof. Atiyah-Bott-Lefschetz localization to the fixed points of Gm × T in
Qα, see [10, Proof of Theorem 5.8]. �
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6.10. Global stabilization. We consider the formal generating function

J(q, t, z, x) =
∏N−1

i=1 x
log(ω̌i)/ log q
i J(q, t, z, x).

Note that if we plug x = qλ̌ into J(q−1, t, z, x) or into J(q−1, t, z, x), then for

a dominant weight λ̌ these formal series converge, and we have J(q−1, t, z, qλ̌) :=∏N−1
i=1 (q〈αi,λ̌〉)log(ω̌i)/ log qJ(q−1, t, z, qλ̌) = zλ̌J(q−1, t, z, qλ̌) (a formal Taylor series

in q and t with coefficients in Laurent polynomials in z).
Recall the generating function Hλ̌(q, t, z) introduced in Section 6.1. The fol-

lowing proposition is very similar to [6, Proposition 4.4]:

Proposition 6.11.

Hλ̌(q, t, z) =
∑
w∈W

J(q−1, t, wz, qλ̌)J∞(q, t, wz)
∏

α̌∈Ř+

1− twzα̌

1− wzα̌
.

Proof. As α goes to ∞, the formula of 6.9 goes to∑
γ∈Λ+

w∈W

zwλ̌q〈γ,λ̌〉Jγ(q
−1, t, wz)J∞(q, t, wz)

∏
α̌∈Ř+

1− twzα̌

1− wzα̌
=

(6.3)
∑
w∈W

zwλ̌J(q−1, t, wz, qλ̌)J∞(q, t, wz)
∏

α̌∈Ř+

1− twzα̌

1− wzα̌
=

∑
w∈W

J(q−1, t, wz, qλ̌)J∞(q, t, wz)
∏

α̌∈Ř+

1− twzα̌

1− wzα̌
.

�

7. Difference equations

7.1. Euler characteristics of De Rham complexes of local Laumon
spaces. For 1 ≤ i ≤ N , we consider the difference operator Ti,q±1 on functions of
q, t, z, x defined as follows: Ti,q±1F (q, t, z, x1, . . . , xN−1) := F (q, t, z, x1, . . . , xi−2,
q∓1xi−1, q

±1xi, xi+1, . . . , xN−1). We define

D :=

N∑
i=1

∏
j<i

1− q−1ti−j−1xj · · ·xi−1

1− ti−jxj · · ·xi−1

∏
k>i

1− qtk−i+1xi · · ·xk−1

1− tk−ixi · · ·xk−1
Ti,q−1

Recall the function zN on the Cartan torus T of SL(N) defined as zN := z−1
1 · · · z−1

N−1.

Theorem 7.2. DJ(q, t, z, x) = (z1 + . . .+ zN )J(q, t, z, x).

Proof. We just recall 3.7 and compare 6.1 and (6.2) with formula (3.3) for an
eigenfunction fN (q, t, z1, . . . , zN , y1, . . . , yN ) of the difference operator

D1
N =

N∑
i=1

zi
∏
j<i

1− t−1yi/yj
1− yi/yj

∏
k>i

1− tyk/yi
1− yk/yi

Tq,yi

where Tq,yi
f(q, t, z1, . . . , zN , y1, . . . , yN ) := f(q, t, z1, . . . , zN , y1, . . . , yi−1, qyi, yi+1,

. . . , yN ). It is immediate that after substitution t = t/q, xi = yi/yi+1 we have
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J(q, t, z, t−1x−1
1 , . . . , t−1x−1

N−1) = fN (q, t, z, y). It follows that D′J(q, t, z, x) = (z1+
. . .+ zN )J(q, t, z, x) where

D′ :=
N∑
i=1

zi
∏
j<i

1− q−1ti−j−1xj · · ·xi−1

1− ti−jxj · · ·xi−1

∏
k>i

1− qtk−i+1xi · · ·xk−1

1− tk−ixi · · ·xk−1
Ti,q−1

The theorem follows. �
7.3. Difference equation on Hλ̌. For a weight λ̌ =

∑N−1
i=1 liω̌i, and 1 ≤ k ≤

N , we define Tkλ̌ as follows: T1λ̌ = (l1 − 1)ω̌1 + l2ω̌2 + . . . + lN−1ω̌N−1, T2λ̌ =
(l1+1)ω̌1+(l2−1)ω̌2+ l3ω̌3+ . . .+ lN−1ω̌N−1, . . . , TN λ̌ = l1ω̌1+ . . .+ lN−2ω̌N−2+

(lN−1 + 1)ω̌N−1. We define the operator D :=
∑N

r=1 Kr(λ̌)Trλ̌ where

Kr(λ̌) =
(1− t2qlr−1)(1− t3qlr+lr+1−1) . . . (1− tN−r+1qlr+...+lN−1)

(1− tqlr)(1− t2qlr+lr+1) . . . (1− tN−rqlr+...+lN−1)
×

× (1− qlr−1+1)(1− tqlr−1+lr−2+1) . . . (1− tr−2qlr−1+...+l1+1)

(1− tqlr−1)(1− t2qlr−1+lr−2) . . . (1− tr−1qlr−1+...+l1)

Now 6.11 and 7.2 admit the following

Corollary 7.4. DHλ̌(q, t, z) = (z1 + . . .+ zN )Hλ̌(q, t, z).

Proof. The function J(q−1, t, wz, qλ̌) on the weight lattice is an eigenfunction
of D (with q inverted) restricted to the weight lattice. According to 6.11, Hλ̌(q, t, z)

is a linear combination of the functions J(q−1, t, wz, qλ̌) with coefficients indepen-
dent of λ̌. Hence Hλ̌(q, t, z) is an eigenfunction of D (with q inverted) restricted to
the weight lattice (that is D) as well. �

7.5. Hλ̌ via Macdonald polynomials. For λ̌ a dominant weight, Pλ̌ is the
Macdonald polynomial [15]. To avoid a misunderstanding, let us state the rela-

tion between our λ̌ =
∑N−1

i=1 liω̌i, and Macdonald’s partitions: we associate to

(l1, . . . , lN−1) the partition (λ̌N ≥ λ̌N−1 ≥ . . . ≥ λ̌3 ≥ λ̌2 ≥ 0) where l1 = λ̌2, l2 =
λ̌3 − λ̌2, . . . , lN−1 = λ̌N − λ̌N−1.

Theorem 7.6.

Hλ̌ = H0

∏
1≤i≤j≤N−1

(tj−i+1; q)li+...+lj

(tj−iq; q)li+...+lj

Pλ̌

Proof. The Pieri rule [15, Equation (6.24)(iv) at page 341] reads DPλ̌ =

(z1 + . . .+ zN )Pλ̌ where D :=
∑N

r=1 Lr(λ̌)Trλ̌, and

Lr(λ̌) =
(1− t2qlr−1)(1− t3qlr+lr+1−1) . . . (1− tN+1−rqlr+...+lN−1−1)

(1− tqlr−1)(1− t2qlr+lr+1−1) . . . (1− tN−rqlr+...+lN−1−1)
×

× (1− qlr)(1− tqlr+lr−1) . . . (1− tN−1−rqlr+...+lN−1)

(1− tqlr )(1− t2qlr+lr−1) . . . (1− tN−rqlr+...+lN−1)

Since Hλ̌(q, t, z) is an eigenfunction of D, the function

P ′
λ̌
(q, t, z) := Hλ̌(q, t, z)H

−1
0

∏
1≤i≤j≤N−1

(tj−i+1; q)−1
li+...+lj

(tj−iq; q)−1
li+...+lj

is an eigenfunction of D. It vanishes outside the cone of dominant weights accord-
ing to 5.3, and it equals 1 at λ̌ = 0. These properties uniquely characterize the
Macdonald polynomials Pλ̌(q, t, z). �
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Remark 7.7. In view of 7.6, 6.11 expressing the Macdonald polynomials in
terms of the Baker-Akhiezer function J(q, t, z, x) is nothing but the generalized
Weyl formula [9, Proposition 5.3], [7, Theorem 3.9].

8. Speculations for arbitrary simple groups

8.1. Perverse coherent sheaves. Let G be an almost simple simply con-
nected complex group with Lie algebra g. We will follow the notations of [5], [6].
Recall the infinite type scheme gQ introduced in [6, Section 2.2]: the quotient by the
action of the Cartan torus T ⊂ G of the space of maps from SpecR = SpecC[[t−1]]

to the affinization of the base affine space G/U− taking value in G/U− at the generic
point. It is equipped with the action of the proalgebraic group G(R); the open orbit

gQ∞ = gQ
0 is nothing but G(R)/T · U−(R): the maps taking value in G/U− at

the closed point r ∈ SpecR. We denote by j the open embedding of gQ
0 into gQ.

All the G(R)-orbits in gQ are numbered by the defects at r taking value in the
cone of positive coroots Λ+ of G : gQ =

⊔
α∈Λ+

gQ
α. The codimension of gQ

α in

gQ equals 2|α|.
We introduce the perversity p( gQ

α) = |α|; it is immediate that the function p is
strictly monotone and comonotone in the sense of [1]. For a locally free G(R)�Gm-
equivariant sheaf F on gQ

0 the construction of [1, Section 4] produces an object
j!∗F of G(R)�Gm-equivariant quasicoherent derived category on gQ.

8.2. Laumon resolution. In case G = SL(N) we denote gQ by Q, and

we have a resolution of singularities π : Q̃ → Q where Q̃ is the moduli space
of flags 0 ⊂ V1 ⊂ V2 . . . ⊂ VN−1 ⊂ RN of free R-modules, rkVi = i, along
with generators of rank 1 free R-modules vi ∈ ΛiVi defined up to multiplica-

tion by a scalar in C. The smoothness of Q̃ follows from the equality Q̃ 
(∏N−1
i=1 Hominj(R

i, Ri+1)
)
/
∏N−1

i=1 GLc(i, R) where Hominj(R
i, Ri+1) stands for the

open subscheme in the scheme (pro- finite dimensional vector space) HomR(R
i, Ri+1)


 Ri(i+1) formed by all the injective homomorphisms, while GLc(i, R) stands for
the group of i×i matrices with coefficients in R, and with constant nonvanishing de-
terminant. For a point φ ∈ Qα we have dim π−1(φ) ≤ |α|−1, see [14, Lemma 2.4.6],

i.e. the morphism π is very small. Hence j!∗(Ω
j
Q0) = Rπ∗Ω

j

Q̃
.

8.3. Euler characteristics for Q. Similarly to Section 6.1, we consider the
generating function [H•(Q, j!∗(Ω

•
Q0) ⊗ O(λ̌))] :=

∑
i,j(−1)i+jtj [Hi(Q, j!∗(Ω

j
Q0) ⊗

O(λ̌))] =
∑

i,j(−1)i+jtj [Hi(Q̃,Ωj

Q̃
⊗ π∗O(λ̌))].

Proposition 8.4. For λ̌ =
∑N−1

i=1 liω̌i we have

[H•(Q̃,Ω•
Q̃
⊗ π∗

O(λ̌))] = H0

∏
1≤i≤j≤N−1

(tj−i+1; q)li+...+lj

(tj−iq; q)li+...+lj

N−2∏
i=1

(
(ti; q)∞

(qti+1; q)∞

)N−i−1

Pλ̌.

Proof. Applying the Atiyah-Bott-Lefschetz localization to the fixed points of

Gm × T in Q̃ we obtain

[H•(Q̃,Ω•
Q̃
⊗π∗

O(λ̌))] =
∑
w∈W

zwλ̌

⎛
⎜⎝ ∑

(θij)∈NM(N)

C(θij)(q
−1, t, wz)q

∑
(i,j)∈M(N) (li+...+lj−1)θij

⎞
⎟⎠
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×
∏

1≤i<j≤N

(qtzw(j)/zw(i); q)∞

(qzw(j)/zw(i); q)∞
×

(
(qt; q)∞
(q; q)∞

)N−1

×
∏

α̌∈Ř+

1− twzα̌

1− wzα̌

It remains to compare 6.1 and the formula 6.3 for Hλ̌ with the above formula,
taking into account 7.6 and 6.6. �

8.5. Euler characteristics for gQ̂. In case G is of type BCFG, following [5,
Section 8.2], we consider a simply connected simply laced group G′ with Lie algebra
g′ and its outer automorphism σ such that g = (g′)σ (i.e. g is obtained by folding

of g′). We define the scheme gQ̂ as a unique irreducible component of the fixed
point subscheme of the automorphism ς of g′Q having nonempty intersection with

g′Q0 (notations of loc. cit.). The orbits of (G′[[t−1]])ς on gQ̂ are numbered by

Λ+(g), and the minimal extension from gQ̂
0 is defined as in 8.1. In order to unify

the notation, in the ADE case let us denote gQ by gQ̂ as well.
Similarly to 6.3, we define H0(t) as W (t) · F (t) where W (t) is the Poincaré

polynomial of the flag variety Bǧ, and F (t) =
∑

Fit
i where Fi is the number of

unordered collections of positive roots α1, . . . , αk, β1, . . . , βm ∈ R+(ǧ) such that

none of α1, . . . , αk is simple, and
∑k

j=1(|αj | − 1) +
∑m

l=1(|βl|+ 1) = i. Here |β| :=
〈β, ρ̌〉.

Conjecture 8.6. (a) For a nondominant G-weight λ̌ we have [H•(gQ̂, j!∗(Ω
•
gQ̂0

)

⊗O(λ̌))] = 0.
(b) For a dominant G-weight λ̌ we have

[H•(gQ̂, j!∗(Ω
•
gQ̂0)⊗ O(λ̌))] = H0

∏
α∈R+(ǧ)

(t|α|; q)〈α,λ̌〉

(t|α|−1q; q)〈α,λ̌〉

∏ (t|α|−1; q)∞
(qt|α|; q)∞

Pλ̌

where Pλ̌(q, t, z) is the Macdonald polynomial for G, and the second product is taken
over all nonsimple positive roots of R+(ǧ).
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