• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture

Journal of Physics: Conference Series. 2012. Vol. 406. No. 012031. P. 1-6.
Bondarenko G., Fisher M. R., Kristya V. I.

Simulation of electron, ion and metastable excited atom motion and interactions in a low-current discharge between the flat electrodes of a gas- discharge device in argon-mercury mixture is fulfilled. Also influence of gas temperature on both densities and fluxes of particles has been investigated. Distributions of the particle densities along the discharge gap under different mixture temperatures are obtained. It has been demonstrated that the principal mechanism of mercury ion generation was the Penning ionization of mercury atoms by argon metastables, which contribution grows sharply with the mixture temperature due to mercury density increase. Calculations showed that both mercury and argon ion flow densities near the cathode where of the same order already under the relative mercury content of about 10-4 corresponding at the argon pressure 103 Pa to the mixture temperature 30 C. Because the mean path length of a mercury ion in the mixture between the resonant charge exchanges on parent gas atoms is much more than that of an argon ion, the energies of mercury ions exceed considerably the energies of argon ions, and they make the main contribution to the physical electrode sputtering. which reduces the service time of the gas- discharge device.