### Article

## Быстро-медленные системы и эффект Джозефсона

A three-parametrical family of ODEs on a torus arises from a model of Josephson effect in a resistive case when a Josephson junction is biased by a sinusoidal microwave current. We study asymptotics of Arnold tongues of this family on the parametric plane (the third parameter is fixed) and prove that the boundaries of the tongues are asymptotically close to Bessel functions.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

In order to model the processes taking place in systems with Josephson contacts, a differential equation on a torus with three parameters is used. One of the parameters of the system can be considered small and the methods of the fast-slow systems theory can be applied. The properties of the phase-lock areas – the subsets in the parameter space, in which the changing of a current doesn’t affect the voltage — are important in practical applications. The phaselock areas coincide with the Arnold tongues of a Poincare map along the period. A description of the limit properties of Arnold tongues is given. It is shown that the parameter space is split into certain areas, where the tongues have different geometrical structures due to fastslow effects. An efficient algorithm for the calculation of tongue borders is elaborated. The statement concerning the asymptotic approximation of borders by Bessel functions is proven.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.