### Article

## A Generalization of the Helly Theorem for Functions with Values in a Uniform Space

In this paper we consider sequences of functions that are defined on a subset of the real line and take on values in a uniform Hausdorff space. For such sequences we obtain a sufficient condition for the existence of pointwise convergent subsequences. We prove that this generalization of the Helly theorem includes many results of the recent research. In addition, we prove that the sufficient condition is also necessary for uniformly convergent sequences of functions. We also obtain a representation for regular functions whose values belong to the uniform space.

Given a closed interval $I=[a,b]$ and a metric space $(M,d)$, we introduce a

nondecreasing sequence $\{\nu_n\}$ of pseudometrics on $M^I$ (the set of all

functions from $I$ into $M$), called the {\it joint modulus of variation}. We show that

if two sequences of functions $\{f_j\}$ and $\{g_j\}$ from $M^I$ are such that

$\{f_j\}$ is pointwise relatively compact on $I$, $\{g_j\}$ is pointwise convergent on $I$,

and $\limsup_{j\to\infty}\nu_n(f_j,g_j)=o(n)$ as $n\to\infty$, then $\{f_j\}$ admits

a pointwise convergent subsequence whose limit on $I$ is a conditionally regulated function.

Given two points *a*=(*a*_{1},…,*a**n*) and *b*=(*b*_{1},…,*b**n*) from *R**n* with *a*<*b* componentwise and a map *f* from the rectangle into a metric semigroup *M*=(*M*,*d*,+), we study properties of the *total variation* of *f* on introduced by the first author in [V.V. Chistyakov, A selection principle for mappings of bounded variation of several variables, in: Real Analysis Exchange 27th Summer Symposium, Opava, Czech Republic, 2003, pp. 217–222] such as the additivity, generalized triangle inequality and sequential lower semicontinuity. This extends the classical properties of C. Jordan's total variation (*n*=1) and the corresponding properties of the total variation in the sense of Hildebrandt [T.H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, 1963] (*n*=2) and Leonov [A.S. Leonov, On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle, Math. Notes 63 (1998) 61–71] (*n*∈*N*) for real-valued functions of *n* variables.

In this paper we consider sequences of functions that are defined on a subset of the real line with values in a uniform Hausdorff space. For such sequences we obtain a sufficient condition for the existence of pointwise convergent subsequences. We prove that this generalization of the Helly theorem includes many results of the recent research. In addition, we prove that the sufficient condition is also necessary for uniformly convergent sequences of functions. We also obtain a representation for regular functions whose values belong to the uniform space.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.