### Article

## Homogeneous components in the moduli space of sheaves and Virasoro characters

The moduli space *M*(*r*,*n*) of framed torsion free sheaves on the projective plane with rank *r* and second Chern class equal to *n* has the natural action of the (*r*+2)-dimensional torus. In this paper, we look at the fixed point set of different one-dimensional subtori in this torus. We prove that in the homogeneous case the generating series of the numbers of the irreducible components has a beautiful decomposition into an infinite product. In the case of odd *r*, these infinite products coincide with certain Virasoro characters. We also propose a conjecture in a general quasihomogeneous case.

We consider the AGT correspondence in the context of the conformal field theory M(p, p')\otimes H, where M(p,p') is the minimal model based on the Virasoro algebra labeled by two co-prime integers p,p' and H is the free boson theory based on the Heisenberg algebra. Using Nekrasov's instanton partition functions without modification to compute conformal blocks in M(p, p')\otimes H leads to ill-defined or incorrect expressions.

We propose the procedure to make this expressions are well defined and check these proposal in two cases: 1. 1-point torus, when the operator insertion is the identity, and 2. The 6-point Ising conforma block on the sphere that involves six Ising magnetic operators.

Marc Haiman has reduced Macdonald Positivity Conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjecture where the symmetric group is replaced by the wreath product of S_n and Z/rZ. He has proven the original conjecture by establishing the geometric statement about the Hilbert scheme, as a byproduct he obtained a derived equivalence between coherent sheaves on the Hilbert scheme and coherent sheaves on the orbifold quotient of A^{2n} by the symmetric group S_n. A short proof of a similar derived equivalence for any symplectic quotient singularity has been obtained by the first author and Kaledin via quantization in positive characteristic. In the present note we prove various properties of these derived equivalences and then deduce generalized Macdonald positivity for wreath products.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

This is the second paper of the series, started by Braverman-Finkelberg (2010) which describes a conjectural analogue of the affine Grassmannian for affine Kac-Moody groups (also known as double affine Grassmannian). The current paper is dedicated to describing a conjectural analogue of the convolution diagram for the double affine Grassmannian. In case our group is the special linear group, our conjectures can be derived from the work of Nakajima.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.