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a b s t r a c t

Themoduli space M(r, n) of framed torsion free sheaves on the projective plane with rank
r and second Chern class equal to n has the natural action of the (r +2)-dimensional torus.
In this paper, we look at the fixed point set of different one-dimensional subtori in this
torus. We prove that in the homogeneous case the generating series of the numbers of the
irreducible components has a beautiful decomposition into an infinite product. In the case
of odd r , these infinite products coincide with certain Virasoro characters. We also propose
a conjecture in a general quasihomogeneous case.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let M(r, n) be the moduli space of framed torsion free sheaves on P2 with rank r and second Chern class c2 equal to n. It
is a smooth irreducible quasi-projective variety of dimension 2rn. In the case r = 1, it is isomorphic to the Hilbert scheme of
n points on the plane. The moduli space M(r, n) has a simple quiver description and we recall it in Section 2.1. In principle,
one can use this description as a definition of M(r, n). We refer the reader to [1,2] for a more detailed discussion of the
moduli space M(r, n).

There is a natural action of the (r + 2)-dimensional torus T = (C∗)r+2 on M(r, n). It is induced by the (C∗)2-action on
P2 and by the action of (C∗)r on the framing. Consider a vector

w⃗ = (w1, w2, . . . , wr) ∈ Zr

and integers α, β ≥ 1, such that gcd(α, β) = 1. Let T w⃗
α,β be the one-dimensional subtorus of T defined by

T w⃗
α,β = {(tα, tβ , tw1 , tw2 , . . . , twr ) ∈ T |t ∈ C∗

}.
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For 0 ≤ m ≤ r , let w⃗(m) be the vector (1, . . . , 1  
m times

, 0, . . . , 0) ∈ Zr . We denote by h0(X) the number of connected components

of a manifold X . We will use the classical q-series notations:
(a)n = (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1),

(a1, a2, . . . , ak; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak; q)∞.

Now we can state our main result.

Theorem 1.1. For any 0 ≤ m ≤ r we have
n≥0

h0


M(r, n)T

w⃗(m)
1,1


qn =

(−q)∞
(q)∞

(qm+1, qr−m+1, qr+2
; qr+2)∞. (1)

In the case of odd r the right-hand side of (1) up to the factor (−q)∞ coincides with a certain Virasoro character. We
discuss it in Section 1.2. In Section 1.4 we formulate a conjecture in the case of arbitrary α, β . We also give a conjectural

formula for the two-variable generating function of the Betti numbers of M(2, n)T
w⃗(m)
1,1 for m = 0, 1.

A connection between themoduli space M(r, n) and the Virasoro characters (or more generallyWn-characters) was also
found in [3]. It appears in a different context and we do not know how to relate it to our work. However in Section 1.3 we
review briefly the paper [3], because we use the characters defined there in our Conjecture 1.2.

Our proof of Theorem 1.1 is combinatorial but we can propose another way to prove it using the representation theory of
the toroidal Yangian. These ideas are under development and we briefly discuss them in Section 1.6. We are going to write
the details in the forthcoming paper.

This work is a continuation of [4,5]. In [4] the first author studied cohomology groups ofM(1, n)Tα,β . In [5] the first author
computed Betti numbers of M(r, n)(C

∗)2 and showed that they coincide with certain coefficients in a generalization of the
MacMahon’s formula.

1.1. Moduli space of sheaves on P2

The moduli space M(r, n) is defined by

M(r, n) =

(E, Φ)


E : a torsion free sheaf on P2

rank(E) = r, c2(E) = n
Φ : E|l∞

∼
−→ O⊕r

l∞ : framing at infinity




isomorphism,

where l∞ = {[0 : z1 : z2] ∈ P2
} ⊂ P2 is the line at infinity.

LetT be the maximal torus of GLr(C) consisting of diagonal matrices and let T = (C∗)2 ×T . The action of T on M(r, n)
is defined as follows. For (t1, t2) ∈ (C∗)2 let Ft1,t2 be the automorphism of P2 defined by

Ft1,t2([z0 : z1 : z2]) = [z0 : t1z1 : t2z2].

For diag(e1, . . . , er) ∈T let Ge1,...,er denote the isomorphism of O⊕r
l∞ given by

O⊕r
l∞ ∋ (s1, . . . , sr) → (e1s1, . . . , er sr).

Then for (E, Φ) ∈ M(r, n) we define
(t1, t2, e1, . . . , er) · (E, Φ) = ((F−1

t1,t2)
∗E, Φ ′),

where Φ ′ is the composition of the homomorphisms

(F−1
t1,t2)

∗E|l∞

(F−1
t1,t2

)∗Φ

−−−−−→ (F−1
t1,t2)

∗O⊕r
l∞ = O⊕r

l∞

Ge1,...,er
−−−−→ O⊕r

l∞ .

1.2. Virasoro characters

We recall several results from the representation theory of the Virasoro algebra. There are modules M(p, p′)2 that are
called the Virasorominimalmodels and labelled by coprime integers p and p′ for which 1 < p < p′. They contain irreducible
modules labelled by r and s with 1 ≤ r < p and 1 ≤ s < p′. In [6,7], the characters of these modules were computed to beχp,p′

r,s = q∆
p,p′
r,s χp,p′

r,s , where χp,p′

r,s is called the normalized character and is given by:

χp,p′

r,s =
1

(q)∞

∞
λ=−∞


qλ2pp′

+λ(p′r−ps)
− q(λp+r)(λp′

+s)


,

and the number ∆
p,p′

r,s is called the conformal dimension and is given by:

∆p,p′

r,s =
(p′r − ps)2 − (p′

− p)2

4pp′
.
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Now let us return to Theorem 1.1. The right-hand side of (1) is known to be equal to (−q)∞χ
2,r+2
1,m+1 when r is odd (see

e.g. [8]). Thus we have the following equation
n≥0

h0


M(2k + 1, n)T

w⃗(m)
1,1


qn = (−q)∞χ

2,2k+3
1,m+1 .

1.3. Quantum continuous gl∞

In [3] the authors study representations of the associative algebra which they denote by E and call quantum continuous
gl∞. This algebra depends on parameters q1 and q2. They construct representations F1(u1) ⊗ · · · ⊗ Fs(us) that depend on
parameters q1, q2, u1, . . . , us. In [3] these representations are constructed purely algebraically but they have the following
geometrical meaning. The space F1(u1)⊗· · ·⊗Fs(us) can be identified with the equivariant K -theory of


n≥0 M(s, n) and

the algebra E acts there through a slight generalization of the correspondences from [9].
The authors of [3] impose the following conditions on the parameters q1, q2, u1, . . . , us:

ui = ui+1q
ai+1
1 qbi+1

2 , i = 1, . . . , s − 1, qp1q
p′

2 = 1,

where a⃗ = (a1, . . . , as−1) ∈ Zs−1
≥0 and b⃗ = (b1, . . . , bs−1) ∈ Zs−1

≥0 are arbitrary vectors and p, p′
∈ Z≥0 are integers such that

p ≠ p′ and

p − 1 −

s−1
i=1

(ai + 1) ≥ 0, p′
− 1 −

s−1
i=1

(bi + 1) ≥ 0.

They construct a new E-module as a subquotient ofF1(u1)⊗· · ·⊗Fs(us). This module is denoted byM
p,p′

a⃗,b⃗
and its character

is denoted by χ
p,p′

a⃗,b⃗
. These characters are connected with the Virasoro characters in the following way. In [3] it is proved that

if p′ > p > 1, gcd(p′, p) = 1 and s = 2, then

χ
p,p′

a1,b1
=

1
(q)∞

χ
p,p′

a1+1,b1+1.

Let us make a remark about the symmetries of the character χ
p,p′

a⃗,b⃗
. For a vector c⃗ ∈ Zs−1 and an integer m we define the

vectors τ(c⃗,m) = (τ (c⃗,m)1, . . . , τ (c⃗,m)s−1) and σ(c⃗,m) = (σ (c⃗,m)1, . . . , σ (c⃗,m)s−1) as follows:

τ(c⃗,m)i = ci+1, σ (c⃗,m)i = cs+1−i,

where cs = m − s −
s−1

i=1 ci. Then we have (see [3])

χ
p,p′

a⃗,b⃗
= χ

p,p′

τ(a⃗,p),τ (b⃗,p′)
= χ

p,p′

σ(a⃗,p),σ (b⃗,p′)
. (2)

1.4. Conjecture 1: arbitrary α, β

Consider a vector w⃗ ∈ Zr and numbers α, β ≥ 1 such that 0 ≤ wi < α + β and gcd(α, β) = 1. Let ai be the number of j
such that wj = i, i.e. ai = ♯{j|wj = i}. The numbers α and α + β are coprime, therefore there exists the unique number α′

such that 0 ≤ α′ < α + β and α′α = 1(mod α + β). We define the vector a⃗′ = (a′

0, a
′

1, . . . , a
′

α+β−1) as follows

a′

i = aα′i(mod α+β).

We define the vector a⃗′′ ∈ Zα+β−1 as the vector a⃗′ without the last coordinate. Let 0⃗ = (0, 0, . . . , 0) ∈ Zα+β−1.

Conjecture 1.2.
n≥0

h0


M(r, n)T

w⃗
α,β


qn = (qα+β

; qα+β)∞χ
α+β,α+β+r
0⃗,a⃗′′

.

Remark 1.3. We used the multiplication by α−1(mod α + β) in the definition of a′. If one uses the multiplication by
β−1(mod α + β), then the character χ will be the same. It follows from (2) and the fact that β−1

= −α−1(mod α + β).

1.5. Conjecture 2: Betti numbers

We denote by Pq(X) the Poincare polynomial


i≥0 dimHi(X)q
i
2 of a manifold X .
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In [4] we proposed the following conjecture
n≥0

Pq

M(1, n)Tα,β


tn =


i≥1

(α+β)-i

1
1 − t i


i≥1

1
1 − qt(α+β)i

. (3)

We conjecture an analogue of (3) for the case r = 2 and α = β = 1.

Conjecture 1.4.
n≥0

Pq

M(2, n)T

(0,0)
1,1


tn =


4-i

1
(1 − t i)(1 − qt i)


i≥1

1
(1 − qt4i)(1 − q2t4i)

,


n≥0

Pq

M(2, n)T

(0,1)
1,1


tn =


n≥1

(1 − t4n−2)

(1 − t2n−1)2(1 − qt4n−2)2(1 − q2t4n−2)(1 − qt4n)2
.

1.6. The toroidal Yangian

For simplicity in this section we consider the case w⃗ = 0⃗.
At the moment we cannot relate the varieties M(r, n)Tα,β togl1-toroidal algebra. However we can see a relation with the

toroidal algebraglα+β . Let Γα+β be the subgroup of C∗
× C∗ defined by

Γα+β =


(ζ s, ζ−s)|s = 0, 1, . . . , α + β − 1, ζ = e

2π i
α+β


.

In [10] it is proved that the toroidal Yangian acts on the equivariant homology groups


n H
C∗

×C∗

∗


M(r, n)Γα+β


.Wewant to

consider the localized homology groups


n H
Tα,β
∗


M(r, n)Γα,β


and a filtration in them given by a dimension of a support.

This filtration is increasing and the lowest level of it has a basis enumerated by the irreducible components of M(r, n)Tα,β .
The toroidal Yangian also has a filtration such that the lowest level is isomorphic toslα+β . The filtration on the Yangian
induces a filtration on the representation and we suppose that it is exactly the filtration given by a dimension of a support.
Then the lowest level of this filtration is the irreducible integrable representation ofslα+β of level r . Suppose α = β = 1.
It is well-known that the characters of the integrable sl2-modules of level r in the principal grading coincide (up to the
factor (−q)∞) with the characters of the irreducible representations of the Virasoro algebra that come from (2, r + 2)-
models. Thus we get (1). Conjecture 1.2 corresponds to the case of general α, β . There is also a possible way to apply the
representation theory of the toroidal Yangian to the proof of the other conjectures in this paper. We hope to develop these
ideas in a forthcoming paper.

1.7. Organization of the paper

In Section 2 we recall the quiver description of the moduli space M(r, n) and find a sufficient condition for the varieties

M(r, n)T
w⃗
α,β to be compact. Compactness of the varieties M(r, n)T

w⃗(m)
1,1 is important in the proof of Theorem 1.1. In Section 3

we construct a cellular decomposition of M(r, n)T
w⃗(m)
1,1 and obtain a combinatorial formula for the number of the irreducible

components. In Section 4 we analyse this combinatorial formula and give a proof of Theorem 1.1.

2. Moduli space of sheaves on P2

Here we recall the quiver description of the moduli space M(r, n) and find a sufficient condition for the varieties
M(r, n)T

w⃗
α,β to be compact.

2.1. Quiver description of M(r, n)

The variety M(r, n) has the following quiver description (see e.g. [1]).

M(r, n) ∼=

(B1, B2, i, j)


(1) [B1, B2] + ij = 0

(2) (stability) There is no subspace
S ( Cn such that Bα(S) ⊂ S (α = 1, 2)

and Im(i) ⊂ S




GLn(C),

where B1, B2 ∈ End(Cn), i ∈ Hom(Cr , Cn) and j ∈ Hom(Cn, Cr) with the action of GLn(C) given by

g · (B1, B2, i, j) = (gB1g−1, gB2g−1, gi, jg−1)

for g ∈ GLn(C).
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In terms of Section 2.1 the T -action on M(r, n) is given by (see e.g. [2])
(t1, t2, e1, e2, . . . , er) · [(B1, B2, i, j)] = [(t1B1, t2B2, ie−1, t1t2ej)].

2.2. Compactness of M(r, n)T
w⃗
α,β

Proposition 2.1. Suppose that max1≤i≤r wi − min1≤i≤r wi < α + β , then for any n the variety M(r, n)T
w⃗
α,β is compact.

Proof. By definition, a point [(B1, B2, i, j)] ∈ M(r, n) is fixed under the action of T w⃗
α,β if and only if there exists a

homomorphism λ : C∗
→ GLn(C) satisfying the following conditions:

tαB1 = λ(t)−1B1λ(t),

tβB2 = λ(t)−1B2λ(t), (4)
i ◦ diag(tw1 , tw2 , . . . , twr )−1

= λ(t)−1i,
tα+βdiag(tw1 , tw2 , . . . , twr ) ◦ j = jλ(t).

Suppose that [(B1, B2, i, j)] is a fixed point. Then we have the weight decomposition of Cn with respect to λ(t), i.e. Cn
=

k∈Z Vk, where Vk = {v ∈ Cn
|λ(t) · v = tkv}. We also have the weight decomposition of Cr , i.e. Cr

=


k∈Z Wk, where
Wk = {v ∈ Cr

|diag(tw1 , . . . , twr ) · v = tkv}. From the conditions (4) it follows that the only components of B1, B2, i and j
that might survive are

B1 : Vk → Vk−α, (5)
B2 : Vk → Vk−β , (6)
i : Wk → Vk,

j : Vk → Wk−α−β . (7)

From the stability condition it follows that

Vk = 0, if k > max
1≤i≤r

wi.

Then from the condition max1≤i≤r wi − min1≤i≤r wi < α + β and (7) it follows that j = 0.
Consider the variety M0(r, n) from [2]. It is defined as an affine algebro-geometric quotient

M0(r, n) = {(B1, B2, i, j)|[B1, B2] + ij = 0}//GLn(C).

It can be viewed as the set of closed orbits in {(B1, B2, i, j)|[B1, B2] + ij = 0}. There is a morphism π : M(r, n) → M0(r, n).
It maps a point [(B1, B2, i, j)] ∈ M(r, n) to the unique closed orbit that is contained in the closure of the orbit of (B1, B2, i, j)
in {(B1, B2, i, j)|[B1, B2] + ij = 0}. The variety M0(r, n) is affine and the morphism π is projective (see e.g. [2]).

By [11] the coordinate ring of M0(r, n) is generated by the following two types of functions:
(a) tr(BaN BaN−1 · · · Ba1 : Cn

→ Cn), where ai = 1 or 2.
(b) χ(jBaN BaN−1 · · · Ba1 i), where ai = 1 or 2, and χ is a linear form on End(Cr).
From (5) and (6) it follows that the equation

π∗f |
M(r,n)

T w⃗
α,β

= 0 (8)

holds for any function f of type (a). We observed that for any point [(B1, B2, i, j)] ∈ M(r, n)T
w⃗
α,β we have j = 0. Hence, (8)

holds for any function f of type (b).
We see that the image of M(r, n)T

w⃗
α,β under the map π is a point. Therefore the variety M(r, n)T

w⃗
α,β is compact. �

3. Cellular decomposition of M(r, n)
T w⃗(m)
1,1

In this section we construct a cellular decomposition of M(r, n)T
w⃗(m)
1,1 and obtain a combinatorial formula for the number

of the irreducible components.
For a partition λ = λ1, λ2, . . . , λk, λ1 ≥ λ2 ≥ · · · ≥ λk > 0 let |λ| =

k
i=1 λi and l(λ) = k. We denote by P the set of

all partitions and by DP the set of partitions with distinct parts.
Let S(r,m) be the set of r-tuples (λ(1), λ(2), . . . , λ(r)) of partitions λ(i)

∈ DP such that λ
(i)
1 ≤ l(λ(i+1)) + δi,m, for

1 ≤ i ≤ r − 1. Let

S(r,m)n =


(λ(1), . . . , λ(r)) ∈ S(r,m)

 r
i=1

|λ(i)
| = n


.
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Fig. 1.

Proposition 3.1.

h0


M(r, n)T

w⃗(m)
1,1


= ♯S(r,m)n.

Proof. The set of fixed points of the T -action on M(r, n) is finite and is parametrized by the set of r-tuples D =

(D1,D2, . . . ,Dr) of Young diagrams Di, such that
r

i=1 |Di| = n (see e.g. [2]).
For a Young diagram Y let

rl(Y ) = |{(i, j) ∈ D|j = l}|,
cl(Y ) = |{(i, j) ∈ D|i = l}|.

For a point s = (i, j) ∈ Z2
≥0 let

lY (s) = rj(Y ) − i − 1,
aY (s) = ci(Y ) − j − 1,

see Fig. 1. Note that lY (s) and aY (s) are negative if s ∉ Y .
Let p be the fixed point of the T -action corresponding to an r-tuple D. Let R(T ) = Z[t±1

1 , t±1
2 , e±1

1 , e±1
2 , . . . , e±1

r ] be the
representation ring of T . Then theweight decomposition of the tangent space Tp(M(r, n)) of the varietyM(r, n) at the point
p is given by (see e.g. [2])

Tp(M(r, n)) =

r
i,j=1

eje−1
i


s∈Di

t
−lDj (s)

1 t
aDi (s)+1
2 +


s∈Dj

t
lDi (s)+1
1 t

−aDj (s)

2

 . (9)

Consider an integer γ and an integer vector v⃗ = (v1, . . . , vr) such that

v1 ≫ v2 ≫ · · · ≫ vr ≫ γ ≫ 1. (10)

It is easy to see thatM(r, n)T = M(r, n)T
v⃗
1,γ . For a fixed point p ∈ M(r, n)T let Cp = {z ∈ M(r, n)T

w⃗(m)
1,1 | limt→0, t∈T v⃗

1,γ
tz = p}.

By Proposition 2.1 the variety M(r, n)T
w⃗(m)
1,1 is compact, hence it has a cellular decomposition with the cells Cp (see [12,13]).

From (10) and (9) it follows that the complex dimension of the cell Cp is equal to
r

i=1

|{s ∈ Di|aDi(s) + 1 = lDi(s)}| +


r≥i>j≥1

|{s ∈ Di|wj − wi − lDj(s) + aDi(s) + 1 = 0}|

+


r≥i>j≥1

|{s ∈ Dj|wj − wi + lDi(s) + 1 − aDj(s) = 0}|,

where (w1, . . . , wr) = w⃗(m). Therefore, the dimension of the cell Cp is equal to 0 if and only if the following three conditions
hold

{s ∈ Di|aDi(s) + 1 = lDi(s)} = ∅, ∀1 ≤ i ≤ r, (11)

{s ∈ Di|wj − wi − lDj(s) + aDi(s) + 1 = 0} = ∅, ∀r ≥ i > j ≥ 1, (12)

{s ∈ Dj|wj − wi + lDi(s) + 1 − aDj(s) = 0} = ∅, ∀r ≥ i > j ≥ 1. (13)

It is sufficient to prove that these equations are equivalent to the following system

Di ∈ DP , (14)
c0(Di) ≤ r0(Di+1) + δi,m, (15)

where Di ∈ DP means that nonzero lengths of columns of a Young diagram Di are distinct.
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Suppose that Eqs. (11)–(13) hold. Condition (14) easily follows from (11). Suppose that c0(Di) > r0(Di+1) + δi,m. For a
point s = (0, c0(Di) − 1) we have

δi,m + lDi+1(s) + 1 − aDi(s) = δi,m + lDi+1(s) + 1 ≥ 0. (16)

For a point s = (0, 0) we have

δi,m + lDi+1(s) + 1 − aDi(s) = δi,m + r0(Di+1) − c0(Di) + 1 ≤ 0. (17)

Note that for two points s1 = (0, y) and s2 = (0, y + 1), where 0 ≤ y < c0(Di) − 1, we have
lDi+1(s2) + 1 − aDi(s2)


−

lDi+1(s1) + 1 − aDi(s1)


= lDi+1(s2) − lDi+1(s1) + 1 ≤ 1. (18)

From (16)–(18) it follows that there exists a number 0 ≤ y ≤ c0(Di) − 1 such that for a point s = (0, y) we have

δi,m + lDi+1(s) + 1 − aDi(s) = 0.

This contradicts (13). Thus, we have proved (15).
Suppose that Eqs. (14), (15) hold. It is easy to see that (11) follows from (14). Let us prove (13). Consider a point

s = (x, y) ∈ Dj and let r ≥ i > j ≥ 1. Let s1 = (x, 0) and s2 = (0, 0), we have

wj − wi + lDi(s) + 1 − aDj(s)
by (14)
≥ wj − wi + lDi(s1) + 1 − aDj(s1)

by (14)
≥ wj − wi + lDi(s2) + 1 − aDj(s2)

= wj − wi + r0(Di) − c0(Dj) + 1
by (15)
> 0.

Let us prove (12). Suppose s ∈ Di and r ≥ i > j ≥ 1. From (14) and (15) it follows that

lDj(s) ≤ lDi(s) + wj − wi.

Thus

wj − wi − lDj(s) + aDi(s) + 1 ≥ −lDi(s) + aDi(s) + 1
by (14)
≥ 1.

This completes the proof of the proposition. �

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. By Proposition 3.1 we have
n≥0

h0


M(r, n)T

w⃗(m)
1,1


qn =


(λ(1),...,λ(r))∈S(r,m)

q

r
i=1

|λ(i)
|

.

In Section 4.1we obtain fermionic expressions for the right-hand side of this equation. Themain idea is to transform them to
a known fermionic formula for the second infinite product on the right-hand side of (1). In Section 4.2 we use the Gordon’s
generalization of the Rogers–Ramanujan identities to finish the proof of the theorem in the case when r is odd. The case of
even r is covered by an identity from [14], we do it in Section 4.3.

Clearly, S(r, r) = S(r, 0). Therefore we have h0


M(r, n)T

w⃗(r)
1,1


= h0


M(r, n)T

w⃗(0)
1,1


. It is also obvious that in the case

m = r the right-hand side of (1) is the same as in the case m = 0. Thus it is enough to prove the theorem in the case
0 ≤ m ≤ r − 1.

4.1. Fermionic expressions for the generating series

Let λ = λ1, λ2, . . . , λs be a partition. We will use the standard notation

(q)λ = (q)λ1−λ2 · · · (q)λs−1−λs(q)λs .

Proposition 4.1. Let 0 ≤ m ≤ r − 1. Then we have


(λ(1),...,λ(r))∈S(r,m)

q

r
i=1

|λ(i)
|

=


ρ1≥···≥ρr

q

r
i=1

ρ2i +ρi
2

(q)ρ

1 +

m−1
i=0

q

i
j=0

(ρr−m+j+1)
 .
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Proof. The q-binomial coefficients are defined by
M
N


q
=


(q)M

(q)N(q)M−N
, ifM ≥ N ≥ 0,

0, in other cases.

We have (see e.g. [15])
M
N


q
=


M − 1

N


q
+ qM−N


M − 1
N − 1


q
, (19)


λ∈P

λ1≤M,l(λ)≤N

q|λ|
=


M + N

N


q
. (20)

From (20) it follows that
λ∈DP

l(λ)=N,λ1≤M

q|λ|
= q

N2
+N
2


M
N


q
.

Therefore, we have


(λ(1),...,λ(r))∈S(r,m)

q

r
i=1

|λ(i)
|

=


ρ1,...,ρr

q

r
i=1

ρ2i +ρi
2

r−1
i=0


ρi + δi,r−m

ρi+1


,

where we define ρ0 to be equal to ∞. Using (19), we get


ρ1,...,ρr

q

r
i=1

ρ2i +ρi
2

r−1
i=0


ρi + δi,r−m

ρi+1



=


ρ1,...,ρr

q

r
i=1

ρ2i +ρi
2

r−1
i=0


ρi

ρi+1


+ qρr−m−ρr−m+1+1


ρ1,...,ρr

q

r
i=1

ρ2i +ρi
2

r−1
i=0


ρi

ρi+1 − δi,r−m



=


ρ1,...,ρr

q

r
i=1

ρ2i +ρi
2

r−1
i=0


ρi

ρi+1


+ qρr−m+1


ρ1,...,ρr

q

r
i=1

ρ2i +ρi
2

r−1
i=0


ρi + δi,r−m+1

ρi+1



= · · · =


ρ1≥···≥ρr

q

r
i=1

ρ2i +ρi
2

(q)ρ

1 +

m−1
i=0

q

i
j=0

(ρr−m+j+1)
 .

The proposition is proved. �

Proposition 4.2. Let 0 ≤ m ≤ r − 1. Then we have


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ

1 +

m−1
i=0

q

i
j=0

(λr−m+j+1)
 =


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ

1 +

m′
−1

i=0

q

i
j=0

(λr−1−2j+1)
 ,

where m′
= min(m, r − m).

Before proving this proposition we introduce the following notation. Suppose P(x1, . . . , xr , q) and Q (x1, . . . , xr , q) are
polynomials in x1, . . . , xr and q. We will write P ≈ Q if


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ


P(qλ1 , . . . , qλr , q) − Q (qλ1 , . . . , qλr , q)


= 0.

Proposition 4.2 says that
m−1
i=0

qi
i

j=0

xr−m+j ≈

min(m,r−m)−1
i=0

qi
i

j=0

xr−1−2j.

We will prove a more general statement.
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Proposition 4.3. Suppose 0 ≤ s ≤ l − 1 and l ≤ r. Then
s−1
i=0

qi
i

j=0

xl−s+j


P(x≥l, q) ≈


min(s,l−s)−1

i=0

qi
i

j=0

xl−1−2j


P(x≥l, q), (21)

where P(x≥l, q) is any polynomial that does not depend on x1, . . . , xl−1.

Proof. We adopt the following conventions, x<1 = 0 and x>r = 1.

Lemma 4.4. For 1 ≤ s ≤ r we have

xs(1 + qxs+1)P(x≠s, q) ≈ xs+1(1 + qxs−1)P(x≠s, q),

where P(x≠s, q) is a polynomial that does not depend on xs.

Proof. We have


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ


qλs − qλs+1 + qλs+λs+1+1

− qλs−1+λs+1+1 P(qλ≠s , q)

= −


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ
qλs+1(1 − qλs−λs+1)P(qλ≠s , q) (22)

+


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ
qλs+λs+1+1(1 − qλs−1−λs)P(qλ≠s , q). (23)

In (22) wemake the shift λi → λi+1 for i = 1, . . . , s and in the sum (23) wemake the shift λi → λi+1 for i = 1, . . . , s−1.
We get

−


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ
qλs+1q

s
i=1

(λi+1)
P(qλ1+1, . . . , qλs−1+1, qλ≥s+1 , q)

+


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ
qλs+λs+1+1q

s−1
i=1

(λi+1)
P(qλ1+1, . . . , qλs−1+1, qλ≥s+1 , q) = 0.

The lemma is proved. �

Lemma 4.5. Suppose that l ≤ r and 0 ≤ s ≤
l−2
2 , then

(1 + qxl)
s

i=0

xl−1−2iP(x≥l, q) ≈ (1 + qxl−2s−2)

s
i=0

xl−2iP(x≥l, q).

Proof. By Lemma 4.4

(1 + qxl)xl−1xl−3 · · · xl−1−2sP(x≥l, q) ≈ xl(1 + qxl−2)xl−3xl−5 · · · xl−1−2sP(x≥l, q)
≈ xlxl−2(1 + qxl−4)xl−5 · · · xl−1−2sP(x≥l, q)
≈ · · · ≈ xlxl−2 · · · xl−2s(1 + qxl−2−2s)P(x≥l, q).

The lemma is proved. �

Wewill prove (21) by induction on s. The case s = 1 is trivial and the case s = 2 follows from Lemma 4.4. Suppose s ≥ 3.
We have

s−1
i=0

qi
i

j=0

xl−s+j


P(x≥l, q) =


(1 + qxl−1)

s−2
i=0

qi
i

j=0

xl−s+j − qxl−1

s−3
i=0

qi
i

j=0

xl−s+j


P(x≥l, q).



A. Buryak, B.L. Feigin / Journal of Geometry and Physics 62 (2012) 1652–1664 1661

Suppose that 2s ≤ l + 1, then
(1 + qxl−1)

s−2
i=0

qi
i

j=0

xl−s+j − qxl−1

s−3
i=0

qi
i

j=0

xl−s+j


P(x≥l, q)

by the induction
assumption

≈


(1 + qxl−1)

s−2
i=0

qi
i

j=0

xl−2−2j −

s−2
i=1

qi
i

j=0

xl−1−2j


P(x≥l, q)

by Lemma 4.5
≈


s−2
i=0

(1 + qxl−3−2i)qi
i

j=0

xl−1−2j −

s−2
i=1

qi
i

j=0

xl−1−2j


P(x≥l, q)

=


s−1
i=0

qi
i

j=0

xl−1−2j


P(x≥l, q).

We see that we have done the induction step in the case 2s ≤ l. If 2s = l + 1, then it remains to note that
s−1
i=0

qi
i

j=0

x2s−2−2j


P(x≥2s−1, q) =


s−2
i=0

qi
i

j=0

x2s−2−2j


P(x≥2s−1, q).

Suppose that 2s ≥ l + 2, then
(1 + qxl−1)

s−2
i=0

qi
i

j=0

xl−s+j − qxl−1

s−3
i=0

qi
i

j=0

xl−s+j


P(x≥l, q)

by the induction
assumption

≈


(1 + qxl−1)

l−s−1
i=0

qi
i

j=0

xl−2−2j −

l−s
i=1

qi
i

j=0

xl−1−2j


P(x≥l, q)

by Lemma 4.5
≈


l−s−1
i=0

(1 + qxl−3−2i)qi
i

j=0

xl−1−2j −

l−s
i=1

qi
i

j=0

xl−1−2j


P(x≥l, q)

=


l−s−1
i=0

qi
i

j=0

xl−1−2j


P(x≥l, q).

The proposition is proved. �

From Proposition 4.2 it follows that

h0


M(r, n)T

w⃗(m)
1,1


= h0


M(r, n)T

w⃗(r−m)
1,1


.

We can also see that the substitution m → r − m does not change the right-hand side of (1). So in the rest of the proof of
the theorem we assume thatm ≤

r
2 .

4.2. The case r = 2k + 1

We have 0 ≤ m ≤ k.

Proposition 4.6.


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ

1 +

m−1
i=0

q

i
j=0

(λr−1−2j+1)
 (24)

= (−q)∞


λ1≥···≥λk

q

k
i=1

(λ2i +λi)

(q)λ

1 +

m−1
i=0

q

i
j=0

(λk−j+1)
 . (25)
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Proof. We have the following equation

α
i=β

q
i(i+1)

2 q
β(β+1)

2

(q)α−i(q)i−β

= qβ(β+1) (−qβ+1)α−β

(q)α−β

. (26)

It can be easily derived from the q-binomial formula (see e.g. [15]).
We can fix λ2, λ4, . . . , λ2k in (24) and sum over λ1, λ3, . . . , λ2k+1 using (26). Then we get exactly the sum (25). �

Proposition 4.7.


λ1≥···≥λk

q

k
i=1

(λ2i +λi)

(q)λ

1 +

m−1
i=0

q

i
j=0

(λk−j+1)
 =

(qm+1, q2k−m+2, q2k+3
; q2k+3)∞

(q)∞
.

Proof. Consider the functions Jk,i(a, x, q) from Ch. 7 of the book [15]. We only need the following two properties of Jk,i
(see [15, Ch. 7]).

Jk,i(0, x, q) =


λ1≥···≥λk−1

x|λ|
qλ21+···+λ2k−1+λi+···+λk−1

(q)λ
,

Jk,i(0, x, q) − Jk,i−1(0, x, q) = (xq)i−1Jk,k−i+1(0, xq, q). (27)

We have

Jk+1,m+1(0, 1, q) = Jk+1,m(0, 1, q) + qmJk+1,k−m+1(0, q, q)

= Jk+1,m−1(0, 1, q) + qm−1Jk+1,k−m+2(0, q, q) + qmJk+1,k−m+1(0, q, q)

= · · · = Jk+1,1(0, 1, q) +

m−1
i=0

qi+1Jk+1,k−i(0, q, q)

=


λ1≥···≥λk

q

k
i=1

(λ2i +λi)

(q)λ

1 +

m−1
i=0

q

i
j=0

(λk−j+1)
 .

On the other hand we have (see [15, Ch. 7])

Jk+1,m+1(0, 1, q) =
(qm+1, q2k−m+2, q2k+3

; q2k+3)∞

(q)∞
.

This completes the proof of the proposition. �

Propositions 4.6 and 4.7 conclude the proof of the theorem in the case when r is odd.

4.3. The case r = 2k

We have 0 ≤ m ≤ k.

Proposition 4.8.


λ1≥···≥λr

q

r
i=1

λ2i +λi
2

(q)λ

1 +

m−1
i=0

q

i
j=0

(λr−1−2j+1)
 =


λ1≥···≥λk

(−q)λ1q
λ21+λ1

2 +

k
i=2

(λ2i +λi)

(q)λ

1 +

m−1
i=0

q

i
j=0

(λk−j+1)
 .

Proof. Similar to the proof of Proposition 4.6. �

Proposition 4.9. We have


λ1≥···≥λk

(−q)λ1q
λ21+λ1

2 +

k
i=2

(λ2i +λi)

(q)λ

2
m−1
i=0

q

i−1
j=0

(λk−j+1)
+ q

m−1
j=0

(λk−j+1)
 =


λ1≥···≥λk

(−q)λ1q
λ21−λ1

2 +

k
i=2

λ2i +
k

i=m+1
λi

(q)λ
.
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Proof. Suppose P(x1, . . . , xk, q) and Q (x1, . . . , xk, q) are polynomials in variables x1, . . . , xk and q. We will write P ≈2 Q if


λ1≥···≥λk

(−q)λ1q
λ21−λ1

2 +

k
i=2

λ2i

(q)λ


P(qλ1 , . . . , qλk , q) − Q (qλ1 , . . . , qλk , q)


= 0.

The proposition says that

k
i=m+1

xi ≈2


2

m−1
i=0

qi
k

j=k−i+1

xj + qm
k

i=k−m+1

xi


k

i=1

xi. (28)

The proof of (28) is based on the following three lemmas. We adopt the conventions, x<1 = 0 and x>k = 1.

Lemma 4.10. Suppose 1 ≤ s ≤ k, then we have

xs(1 + qxsxs+1)P(x≠s, q) ≈2 xs+1(1 + qxs−1xs)P(x≠s, q), if s ≥ 2,

x1(1 + x2 + qx1x2)P(x≥2, q) ≈2 x2P(x≥2, q), if s = 1.

Proof. Similar to the proof of Lemma 4.4. �

Lemma 4.11. Suppose 1 ≤ s < l ≤ k + 1, then

(xl − xs)
l

i=s+1

xi
k

i=l+1

x2i ≈2 q(xl−1 − xs−1)

l−1
i=s

xi
k
i=l

x2i , if s ≥ 2, (29)

(xl − x1)
l

i=2

xi
k

i=l+1

x2i ≈2(1 + qxl−1)

l−1
i=1

xi
k
i=l

x2i , if s = 1. (30)

Proof. Let us prove (29). Using Lemma 4.10 we have

(1 + qxs−1xs)xs+1

l−1
i=s+2

xi
k
i=l

x2i ≈2 xs(1 + qxsxs+1)xs+2

l−1
i=s+3

xi
k
i=l

x2i

≈2 · · · ≈2 xsxs+1 · · · xl−1(1 + qxl−1xl)xl
k

i=l+1

x2i .

Thus, (29) is proved. Eq. (30) can be proved similarly. �

Lemma 4.12. For any 1 ≤ s ≤ k we have

(1 − xs)
k

i=s+1

xi ≈2 qs−1(1 + qxk−s+1)

k−s+1
i=1

xi
k

i=k−s+2

x2i .

Proof. By Lemma 4.11 we have

(1 − xs)
k

i=s+1

xi ≈2 q(xk − xs−1)

k
i=s

xi ≈2 q2(xk−1 − xs−2)


k−1

i=s−1

xi


x2k

≈2 · · · ≈2 qs−1(xk−s+2 − x1)
k−s+2
i=2

xi
k

i=k−s+3

x2i

≈2 qs−1(1 + qxk−s+1)

k−s+1
i=1

xi
k

i=k−s+2

x2i .

The lemma is proved. �
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We are ready to prove (28). We have
k

i=m+1

xi =

m−1
i=0

(1 − xm−i)

k
i=m−i+1

xi +
k

i=1

xi

by Lemma 4.12
≈2


m−1
i=0

qi(1 + qxk−i)

k
j=k−i+1

xj + 1


k

i=1

xi

=


2

m−1
i=0

qi
k

j=k−i+1

xj + qm
k

i=k−m+1

xi


k

i=1

xi.

This completes the proof of the proposition. �

Proposition 4.13.


λ1≥···≥λk

(−q)λ1q
λ21+λ1

2 +

k
i=2

(λ2i +λi)

(q)λ

1 +

m−1
i=0

q

i
j=0

(λk−j+1)
 =

(−q)∞
(q)∞

(qm+1, q2k−m+1, q2k+2
; q2k+2)∞.

Proof. Consider the functions E k+1,i(a, q) from the paper [14]. It is proved there that

E k+1,m+1(a, q) =


λ1≥···≥λk

q
λ21+λ1

2 +

k
i=2

λ2i +
k

i=m+1
λi 

−
1
a


λ1

aλ1

(q)λ
, (31)

E k+1,m+1


1
q
, q


=
(−q)∞
(q)∞


(qm+1, q2k−m+1, q2k+2

; q2k+2)∞ + (qm, q2k−m+2, q2k+2
; q2k+2)∞


. (32)

Combining (31), (32) and Proposition 4.9 we get the proof of the proposition. �

Propositions 4.8 and 4.13 complete the proof of the theorem in the case of even r .
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