• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

First principles molecular dynamics simulations of high-pressure melting of diamond

AIP Conference Proceedings. 2020. Vol. 2272. No. 1.
Nguyen-Cong K., Williams A. S., Willman J. T., Belonoshko Anatoly B., Oleynik I. I.

Although the high-pressure phase diagram of carbon at extreme temperatures and pressures is in focus of theoretical and experimental dynamic compression studies, there still exist outstanding problems including disagreement between theoretical predictions and experiments. Using first-principles molecular dynamics simulations at high temperatures and pressures and employing large unit cells, we construct an accurate phase diagram of carbon using two-phase and Z-methods. In accord with previous simulations, a large positive slope of the melting line is observed for pressures from 0 to 200 GPa, whereas at pressures above 500 GPa a very small negative slope exists, which is in contrast to most of previous simulations and experiment. Our accurate results demonstrate the necessity for future dynamic compression experiments to clarify behavior of carbon at extreme conditions including its melting line.