• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Cross-frequency Phase Coupling of Brain Oscillations and Relevance Attribution as Saliency Detection in Abstract Reasoning.

Neuroscience Research. 2021. Vol. 166. P. 26-33.
Aleksandra Miasnikova, Перевознюк Г. С., Martynova O., Баклушев М. Е.

Abstract reasoning is associated with the ability to detect relations among objects, ideas, events. It underlies the understanding of other individuals’ thoughts and intentions. In natural settings, individuals have to infer relevant associations that have proven to be reliable or precise predictors. Salience theory suggests that the attribution of meaning to stimulus depends on their contingency, saliency, and relevance to adaptation. So far, subjective estimates of relevance have mostly been explored in motivation and implicit learning. Mechanisms underlying formation of associations in abstract thinking with regard to their subjective relevance, or salience, are not clear. Applying novel computational methods, we investigated relevance detection in categorization tasks in 17 healthy individuals. Two models of relevance detection were developed: a conventional one with nouns from the same semantic category, an aberrant one based on an insignificant common feature. Control condition introduced non-related words. The participants were to detect either a relevant principle or an insignificant feature to group presented words. In control condition they inferred that the stimuli were irrelevant to any grouping idea. Cross-frequency phase coupling analysis revealed statistically distinct patterns of synchronization representing search and decision in the models of normal and aberrant relevance detection. Significantly distinct frontotemporal functional networks with central and parietal components in the theta and alpha frequency bands may reflect differences in relevance detection.