### Article

## Manifold Learning Based On Kernel Density Estimation

The problem of unknown high-dimensional density estimation has been considered. It has been suggested that the support of its measure is a low-dimensional data manifold. This problem arises in many data mining tasks. The paper proposes a new geometrically motivated solution to the problem in the framework of manifold learning, including estimation of an unknown support of the density. Firstly, the problem of tangent bundle manifold learning has been solved, which resulted in the transformation of high-dimensional data into their low-dimensional features and estimation of the Riemann tensor on the data manifold. Following that, an unknown density of the constructed features has been estimated with the use of the appropriate kernel approach. Finally, using the estimated Riemann tensor, the final estimator of the initial density has been constructed.

One of the ultimate goals of Manifold Learning (ML) is to reconstruct an unknown nonlinear low-dimensional Data Manifold (DM) embedded in a high-dimensional observation space from a given set of data points sampled from the manifold. We derive asymptotic expansion and local lower and upper bounds for the maximum reconstruction error in a small neighborhood of an arbitrary point. The expansion and bounds are defined in terms of the distance between tangent spaces to the original Data manifold and the Reconstructed Manifold (RM) at the selected point and its reconstructed value, respectively. We propose an amplification of the ML, called Tangent Bundle ML, in which proximity is required not only between the DM and RM but also between their tangent spaces. We present a new geometrically motivated Grassman&Stiefel Eigenmaps algorithm that solves this problem and gives a new solution for the ML also.

In many Data Analysis tasks, one deals with data that are presented in high-dimensional spaces. In practice original high-dimensional data are transformed into lower-dimensional representations (features) preserving certain subject-driven data properties such as distances or geodesic distances, angles, etc. Preserving as much as possible available information contained in the original high-dimensional data is also an important and desirable property of the representation. The real-world high-dimensional data typically lie on or near a certain unknown low-dimensional manifold (Data manifold) embedded in an ambient high-dimensional `observation' space, so in this article we assume this Manifold assumption to be fulfilled. An exact isometric manifold embedding in a low-dimensional space is possible in certain special cases only, so we consider the problem of constructing a `locally isometric and conformal' embedding, which preserves distances and angles between close points. We propose a new geometrically motivated locally isometric and conformal representation method, which employs Tangent Manifold Learning technique consisting in sample-based estimation of tangent spaces to the unknown Data manifold. In numerical experiments, the proposed method compares favourably with popular Manifold Learning methods in terms of isometric and conformal embedding properties as well as of accuracy of Data manifold reconstruction from the sample.

The paper presents a new geometrically motivated method for non-linear regression based on Manifold learning technique. The regression problem is to construct a predictive function which estimates an unknown smooth mapping f from q-dimensional inputs to m-dimensional outputs based on a training data set consisting of given ‘input-output’ pairs. The unknown mapping f determines q-dimensional manifold M(f) consisting of all the ‘input-output’ vectors which is embedded in (q+m)-dimensional space and covered by a single chart; the training data set determines a sample from this manifold. Modern Manifold Learning methods allow constructing the certain estimator M* from the manifold-valued sample which accurately approximates the manifold. The proposed method called Manifold Learning Regression (MLR) finds the predictive function fMLR to ensure an equality M(fMLR) = M*. The MLR simultaneously estimates the m×q Jacobian matrix of the mapping f.

We propose a novel multi-texture synthesis model based on generative adversarial networks (GANs) with a user-controllable mechanism. The user control ability allows to explicitly specify the texture which should be generated by the model. This property follows from using an encoder part which learns a latent representation for each texture from the dataset. To ensure a dataset coverage, we use an adversarial loss function that penalizes for incorrect reproductions of a given texture. In experiments, we show that our model can learn descriptive texture manifolds for large datasets and from raw data such as a collection of high-resolution photos. We show our unsupervised learning pipeline may help segmentation models. Moreover, we apply our method to produce 3D textures and show that it outperforms existing baselines.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.