### Article

## Double ramification cycles and quantum integrable systems

In this paper we define a quantization of the Double Ramification Hierarchies using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, Extended Toda, etc. Finally we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.

We introduce the SL(2, C) group action on the partition function of the Cohomological field theory via the certain Givental's action. Restricted to the small phase space we describe the action via the explicit formulae on the CohFT genus g potential. We prove that applied to the total ancestor potential of the simple elliptic singularity the action introduced coincides with the transformation of Milanov-Ruan changing the primitive form (c.f. http://arxiv.org/abs/1106.2321).

In a previous paper we proved that after a simple transformation the generating series of the linear Hodge integrals on the moduli space of stable curves satisfies the hierarchy of the Intermediate Long Wave equation. In this paper we present a much shorter proof of this fact. Our new proof is based on an explicit formula for the one-point linear Hodge integrals that was found independently by Faber, Pandharipande and Ekedahl, Lando, Shapiro, Vainshtein.

Cactus group is the fundamental group of the real locus of the Deligne–Mumford moduli space of stable rational curves. This group appears naturally as an analog of the braid group in coboundary monoidal categories. We define an action of the cactus group on the set of Bethe vectors of the Gaudin magnet chain corresponding to arbitrary semisimple Lie algebra g. Cactus group appears in our construction as a subgroup in the Galois group of Bethe Ansatz equations. Following the idea of Pavel Etingof, we conjecture that this action is isomorphic to the action of the cactus group on the tensor product of crystals coming from the general coboundary category formalism. We prove this conjecture in the case g=sl2 (in fact, for this case the conjecture almost immediately follows from the results of Varchenko on asymptotic solutions of the KZ equation and crystal bases). We also present some conjectures generalizing this result to Bethe vectors of shift of argument subalgebras and relating the cactus group with the Berenstein-Kirillov group of piecewise-linear symmetries of the Gelfand–Tsetlin polytope.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.