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Abstract. In this paper we define a quantization of the Double Ramification Hierarchies of [Bur15b]
and [BR14], using intersection numbers of the double ramification cycle, the full Chern class of the
Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion
formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one
associated with the first descendant of the unit of the cohomological field theory only. We study
various examples which provide, in very explicit form, new (1 + 1)-dimensional integrable quantum
field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate
Long Wave, Extended Toda, etc. Finally we prove polynomiality in the ramification multiplicities of
the integral of any tautological class over the double ramification cycle.
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Introduction

One of the main features of the algebraic setting of Symplectic Field Theory (SFT) [EGH00] and
its approach to the relation between integrable systems and moduli spaces of holomorphic curves is
the appearance of infinite dimensional quantum integrable systems associated to higher genus curves,
as opposed to the fact that, in the Dubrovin-Zhang construction [DZ05] of integrable hierarchies from
cohomological field theories, higher genus curves control the dispersive expansion of a still classical
system.

Of course the target manifolds considered by the two theories are different. In the simplest algebraic
setting, SFT coincides with relative Gromov-Witten theory of a trivial P1-bundle over, say, a closed
Kähler manifold X, relative to the zero and infinity sections. The Dubrovin-Zhang (DZ) hierarchy is
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instead associated with Gromov-Witten theory of the base manifold X. At genus 0 the two theories
recover the same classical dispersionless integrable hierarchy, a system of conservation laws (basically
because on a genus 0 curve with marked points, there is a, unique up to a C∗-symmetry, meromorphic
function with given divisor of zeros and poles supported on the marked points). In higher genus,
however, the two theories differ, the first giving rise to a quantization and the second to a dispersive
expansion of the starting dispersionless system.

More in general one can substitute the Gromov-Witten theory of the target space X with a cohomo-
logical field theory (CohFT) on Mg,n and the relative Gromov-Witten theory of the P1-bundle with

its intersection theory with the double ramification cycle DRg(a1, . . . , an) ∈ H2g(Mg,n;Q). In this
setting, in a recent paper [Bur15b], the first author made a conjecture that the right classical hierarchy
in the SFT construction to be compared with the full genus dispersive DZ-hierarchy is not the genus 0
SFT, but instead the double ramification (DR) hierarchy, corresponding to intersecting the given Co-
hFT with DRg(a1, . . . , an)× λg, where λi is the i-th Chern class of the Hodge bundle on Mg,n. The
conjecture states that the DR-hierarchy and the DZ-hierarchy associated to a given CohFT are equiv-
alent through a Miura tranformation (see [DZ05] for details) and has been checked in [Bur15b] and
[BR14] for various CohFTs (trivial CohFT, Hodge CohFT, Gromov-Witten theory of P1 and in part
for Witten’s r-spin classes). This offers a natural candidate for the construction of a quantization of
the full dispersive DZ-hierarchy, something we call the quantum double ramification (qDR) hierarchy :
the intersection of the given CohFT with DRg(a1, . . . , an)×Λ(ε), where this time Λ(ε) = 1+

∑g
i=1 ε

iλi.

In particular, if we denote by ε and ~ the dispersion and quantization parameters respectively and

put ε = −ε2
~ , we can summarize the situation in the following diagram:

DZε=0 = DRε=0 qDRε=0

DZ ' DR qDR

~

ε ε

~

As explained above, the equivalence in the lower left corner of the diagram is via a Miura transforma-
tion and is still conjectural in general (although the accumulating evidence is quite strong).

The qDR hierarchy has the nature of an integrable quantum field theory in one space and one time
dimensions. It contains N bosonic fields uα(x, t) =

∑
k∈Z p

α
k e
ikx, α = 1, . . . , N defined (formally) on

the circle, where the Fourier coefficients pαk are interpreted as creation and annihilation operators with

the commutation rules [pαk , p
β
j ] = i~kηαβδk+j,0, where ηαβ is a symmetric nondegenerate matrix. Its

integrability is inherited by the classical limit and consists in an infinite family of commuting hamil-
tonian operators Gβ,d, β = 1, . . . , N , d = −1, 0, 1, . . ..

In the paper, after introducing the relevant deformation quantization of the standard hydrodynamic
Poisson bracket of dispersionless DZ hierarchies and a study of its propagator (see [DZ05]), we define
the qDR hierarchy using intersection numbers of a given CohFT with the double ramification cycle
and the Hodge and psi classes and prove commutativity of the (quantum) flows. We also prove a
quantum version of the recursion relations from [BR14] which allow to reconstruct the entire qDR
hierarchy starting from G1,1 alone, the hamiltonian operator associated to the first descendant of the
unit in the CohFT. Thanks also to this recursion we are able to study various examples, effectively
computing the quantization of the KdV, Intermediate Long Wave and extended Toda hierarchies.
For the dispersionless limit of the KdV hierarchy we are able to prove that an explicit generating
function for the quantum Hamiltonians (which appeared in [BSSZ15], see aso [Ros08]) satisfies indeed
our recursion. Finally, in an Appendix, we prove that the integral of an arbitrary tautological class
over the double ramification cycle DRg(a1, . . . , an) is a polynomial in the ramification multiplicities
a1, . . . , an. This means, for instance, that for tautological CohFTs the qDR Hamiltonian densities are
given by differential polynomials, a general assumption under which we work in this paper.
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1. Deformation quantization of the standard hydrodynamic Poisson bracket

In this section we describe a deformation quantization of a Poisson algebra which appears in multiple
contexts. It is the natural Poisson structure arising from the algebriac setting of rational Symplectic
Field Theory [EGH00] (see for instance [Ros10]), it is the normal form of any (0, n)-Poisson brackets
of hydrodynamic type according to the classification of [DZ05] and it is the relevant Poisson structure
for the double ramification hierarchy associated to a given CohFT, according to [Bur15b].

1.1. The standard hydrodynamic Poisson bracket. Referring the reader to [DZ05, Bur15b,
BR14] for precise definitions, we recall that a function f = f(uα, uαx , u

α
xx, . . . ; ε) is a differential poly-

nomial in the jets uαk , α = 1, . . . , N , k = 0, 1, 2, . . ., where uα = uα0 , u
α
x = uα1 , . . ., if f is a formal

power series in ε with coefficients that are polynomials in uαk , for k > 0, and power series in uα0 . The
degree of a differential polynomial is determined by setting deg uαi = i and deg ε = −1. The space
of local functionals is given by the quotient of the space of differential polynomials first by constants
and then by the image of the formal x-derivative operator ∂x =

∑
k≥0 u

α
k+1

∂
∂uαk

(we adhere, here and

in the following, to the convention of sum over repeated greek indices, but not over latin ones). A
local functional is usually represented with the symbol of an integral over the circle f =

∫
fdx, to

represent the fact that the equivalence class of ∂xf is zero. On the space of local functionals we have
the standard hydrodynamic Poisson bracket associated with a nondegenerate symmetric matrix ηαβ:

{f, g} :=

∫ (
δf

δuα
ηαβ∂x

δg

δuβ

)
dx,

where δf
δuα :=

∑
k≥0(−∂x)k ∂f

∂uαk
. With respect to this Poisson bracket, the time evolution of a dif-

ferential polynomial along the flow generated by a local functional g, the Hamiltonian, is given by
∂f
∂t = {f, g} :=

∑
k≥0

∂f
∂uαk

ηαβ∂k+1
x

δg
δuβ

.

1.2. Quantum commutator on local functionals. In [EGH00] the authors described a Weyl alge-
bra formed by (power series in ~ with coefficients that are) power series in pαk , k ≤ 0, with coefficients
that are polynomials in pαk , k > 0, with α = 1, . . . , N . The product rule is described as follows: repre-
senting two power series in the “normal form”, i.e. with all variables with negative or zero subscripts
appearing on the left of all variables with positive subscripts,

f =
∑
g≥0

∑
n≥0

∑
k1,...,kn≤0

pα1
k1
. . . pαnkn f

α1,...,αn
k1,...,kn;g(pk>0)~g,

g =
∑
g≥0

∑
n≥0

∑
k1,...,kn≤0

pα1
k1
. . . pαnkn g

α1,...,αn
k1,...,kn;g(pk>0)~g,

where fα1,...,αn
k1,...,kn;g(p>0) and gα1,...,αn

k1,...,kn;g(p>0) are polynomials, one obtains the product f ?g by commuting

the p≤0 variables of g with the pk>0 variables of f using [pαk , p
β
j ] = i~kηαβδk+j,0. Thanks to polyno-

miality of the coefficients, this process is well defined and produces another element of the same Weyl
algebra.
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This definition of the ?-product coincides with endowing

C[p1
k>0, . . . , p

N
k>0][[p1

k≤0, . . . , p
N
k≤0, ~]]

with the “normal ordering” ?-product

f ? g = f

e∑k>0 i~kηαβ
←−−
∂
∂pα
k

−−−→
∂

∂p
β
−k

 g.

The commutator is then defined consequently as [f, g] := f ? g − g ? f .

We now want to describe how this ?-product is translated to the language of differential polynomials
and local functionals. For the relevant definitions and notations we refer to [DZ05], but also to our
previous papers [Bur15b, BR14]. We will need, first, to extend the space of differential polynomials
to allow for dependence on the quantization formal parameter ~. In view of the results of Appendix
B.2 we will make the following choice: a quantum differential polynomial f = f(uα, uαx , . . . ; ε, ~) is a
formal power series in ~ and ε whose coefficients are polynomials in uαk , for k > 0, and power series
in uα0 . The quantization parameter has degree deg ~ = −2. The space of quantum local functionals
is given, as in the classical case, by taking quotients with respect to constants and the image of the
∂x-operator. Consider now a change of variables

uαj =
∑
k∈Z

(ik)jpαk e
ikx,

which allows to express any quantum differential polynomial f = f(uα, uαx , . . . ; ε, ~) as a formal Fourier
series in x with coefficients that are (power series in ε with coefficients) in the above Weyl algebra.
When needed, we will stress the dependence of f on the formal variable x by writing f(x). Note that

∂

∂pαk
f(x) =

∑
s≥0

(ik)seikx
∂f

∂uαs
(x).

Therefore, for any two differential polynomials f and g we have

f(x) ? g(y) =
∑
n≥0

r1,...,rn≥0
s1,...,sn≥0

~n

n!

∂nf

∂uα1
s1 . . . ∂u

αn
sn

(x)

(
n∏
k=1

(−1)rkηαkβkδ
(rk+sk+1)
+ (x− y)

)
∂ng

∂uβ1
r1 . . . ∂u

βn
rn

(y),

where

δ
(s)
+ (x− y) :=

∑
k≥0

(ik)seik(x−y), s ≥ 0.

The product of derivatives of the formal Fourier series δ+(x− y) can be expressed as a linear combi-
nation of derivatives of the same object:

δ
(a1)
+ (x− y) . . . δ

(an)
+ (x− y) =

n−1+
∑n
k=1 ak∑

j=1

(−i)n−1Ca1,...,an
j δ

(j)
+ (x− y),

where a1, . . . , an ≥ 1 and the Ca1,...,ak
j are rational numbers such that Ca1,...,an

j = 0 unless j =

n − 1 +
∑n

k=1 ak (mod 2) (see Appendix A.2 and Lemma A.4 there). For any specific choice of
a1, . . . , an it is not hard to compute the coefficients Ca1,...,an

j . We also have a general formula for the
top coefficient

Ca1,...,an
n−1+

∑n
k=1 ak

=

∏n
k=1 ak!

(n− 1 +
∑n

k=1 ak)!

Since the parities of the number of x-derivatives in the linear combination all agree, using the fact
that

δ(s)(x− y) = δ
(s)
+ (x− y) + δ

(s)
− (x− y),
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where δ(s)(x−y) :=
∑

k∈Z(ik)seik(x−y) is the s-th derivative of the formal periodic Dirac delta-function,

δ
(s)
− (x− y) :=

∑
k<0(ik)seik(x−y) and δ

(s)
+ (x− y) = (−1)sδ

(s)
− (y − x), for s > 0, we obtain

[f(x), g(y)] =
∑
n≥1

r1,...,rn≥0
s1,...,sn≥0

(−i)n−1~n

n!

∂nf

∂uα1
s1 . . . ∂u

αn
sn

(x)(−1)
∑n
k=1 rk

(
n∏
k=1

ηαkβk

)
×

×
2n−1+

∑n
k=1(sk+rk)∑
j=1

Cs1+r1+1,...,sn+rn+1
j δ(j)(x− y)

∂ng

∂uβ1
r1 . . . ∂u

βn
rn

(y).

(1.1)

In particular, we get

[f, g] =
∑
n≥1

r1,...,rn≥0
s1,...,sn≥0

(−i)n−1~n

n!

∂nf

∂uα1
s1 . . . ∂u

αn
sn

(−1)
∑n
k=1 rk

(
n∏
k=1

ηαkβk

)
×

×
2n−1+

∑n
k=1(sk+rk)∑
j=1

Cs1+r1+1,...,sn+rn+1
j ∂jx

∂ng

∂uβ1
r1 . . . ∂u

βn
rn

.

(1.2)

Notice how, for any quantum differential polynomial f and quantum local functional g, this formula
gives a quantum differential polynomial of degree deg([f, g]) = deg f + deg g − 1.

Taking the classical limit of this expression one obtains
(

1
~ [f, g]

)
|~=0 = {f |~=0, g|~=0}, i.e. the

standard hydrodynamic Poisson bracket on the classical limit of the local functionals.

2. Quantum double ramification hierarchy

2.1. Hamiltonian densities. Given a cohomological field theory cg,n : V ⊗n → Heven(Mg,n;C), we
define the hamiltonian densities of the quantum double ramification hierarchy as the following gener-
ating series:

Gα,d :=
∑

g≥0,n≥0
2g−1+n>0

(i~)g

n!
×

×
∑

a1,...,an∈Z
α1,...,αn

(∫
DRg(−

∑
ai,a1,...,an)

Λ

(
−ε2

i~

)
ψd1cg,n+1 (eα ⊗⊗ni=1eαi)

)
pα1
a1
. . . pαnan e

ix
∑
ai ,

(2.1)

for α = 1, . . . , N and d = 0, 1, 2, . . .. Here DRg (a1, . . . , an) ∈ H2g(Mg,n;Q) is the double ramification

cycle, Λ
(
−ε2
i~

)
:=
(

1 +
(
−ε2
i~

)
λ1 + . . .+

(
−ε2
i~

)g
λg

)
, with λi the i-th Chern class of the Hodge bundle

and ψi is the first Chern class of the tautological bundle at the i-th marked point. When needed, we
will stress the dependence of Gα,d on the formal variable x by writing Gα,d(x).

Our definition of quantum double ramification hierarchy might probably also be referred to as
symplectic field theory hierarchy associated to the cohomological field theory

cg,n (⊗ni=1eαi)×
(

1 +

(
−ε2

i~

)
λ1 + . . .+

(
−ε2

i~

)g
λg

)
,

given that, when we take the integral with respect to x of the above generating series and we take as
cohomological field theory the Gromov-Witten theory of a closed target symplectic manifold M , we
obtain indeed the definition of the SFT Hamiltonians [EGH00] for the standard stable hamiltonian
structure on M × S1 (see also [FR11]).
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As for the “classical” hamiltonian densities gα,p = Gα,p|~=0 defined in [BR14], we would like to

rewrite the above expression in terms of formal jet variables uαs =
∑

k∈Z(ik)spαk e
ikx, α = 1, . . . , N ,

s = 0, 1, 2, . . .. Working under the assumption that the double ramification cycle DRg(a1, . . . , an) is
a non-homogeneous polynomial of degree at most 2g in the variables a1, . . . , an (which is compatible
with the recent conjecture by Pixton on the double ramification cycle explicit form), we actually obtain
that each Gα,p can be uniquely written as a quantum differential polynomial of degree degGα,p ≤ 0.

This means that the number of x-derivatives that can appear in the coefficient of εk~j is at most k+2j.
In fact, it is proved in Appendix B.2 that integrals of tautological classes over the double ramification
cycle DRg(a1, . . . , an) are indeed non-homogeneous polynomials of degree at most 2g in the variables
a1, . . . , an. So, if the cohomological field theory we start with is tautological, this ensures that our
densities are quantum differential polynomials of non-positive degree.

Remark 2.1. Cohomological field theories that consist of tautological classes form a very large class
of cohomological field theories. In particular, all semisimple cohomological field theories and also
cohomological field theories whose shift is semisimple belong to this class (see e.g. [PPZ15]). 4

We finally add manually N extra densities Gα,−1 := ηαµu
µ. Recall that by Gα,p =

∫
Gα,pdx

we denote the coefficient of ei0x in Gα,p considered also up to a constant, for all α = 1, . . . , N ,
p = −1, 0, 1, . . ..

2.2. Main Lemma. In order to prove commutativity and recursion formulae for the quantum double
ramification hierarchy one can proceed exactly as in [Bur15b] and [BR14], respectively. However here
we will take a slightly different approach based on the following result from [BSSZ15]. For a subset
I = {i1, i2, . . .}, i1 < i2 < . . ., of the set {1, 2, . . . , n} we will use the following notations:

AI := (ai1 , ai2 , . . .), aI :=
∑
i∈I

ai.

Suppose the set {1, 2, . . . , n} is divided into two disjoint subsets, I t J = {1, 2, . . . , n}, in such a way
that aI > 0. Choose a list of positive integers k1, . . . , kp such that

∑p
i=1 ki = aI . Let us denote by

DRg1(AI ,−k1, . . . ,−kp)�DRg2(AJ , k1, . . . , kp) the cycle inMg1+g2+p−1,n obtained by gluing the two
double ramification cycles at the marked points labeled by k1, . . . , kp.

Theorem 2.2 ([BSSZ15]). Let t and s be two different elements in {1, . . . , n}. Assume that both as
and at are non-zero. Then we have

(asψs − atψt)DRg(a1, . . . , an) =

=
∑

s∈I,t∈J

∑
p≥1

∑
g1,g2

∑
k1,...,kp

∏p
i=1 ki
p!

DRg1(AI ,−k1, . . . ,−kp) �DRg2(AJ , k1, . . . , kp)

−
∑

t∈I,s∈J

∑
p≥1

∑
g1,g2

∑
k1,...,kp

∏p
i=1 ki
p!

DRg1(AI ,−k1, . . . ,−kp) �DRg2(AJ , k1, . . . , kp).

where the first sum is taken over all I t J = {1, . . . , n} such that aI > 0; the third sum is over all
non-negative genera g1, g2 satisfying g1 +g2 +p−1 = g; the fourth sum is over the p-uplets of positive
integers with total sum aI = −aJ .

We now define the following generating function for intersection numbers involving the insertion of
psi-classes at two marked points:

Gα,p;β,q(x, y) :=
∑

g≥0,n≥0
2g+n>0

(i~)g

n!

∑
a0,...,an+1∈Z∑

ai=0
α1,...,αn

(∫
DRg(a0,a1,...,an,an+1)

Λ

(
−ε2

i~

)
ψp0ψ

q
n+1×

× cg,n+2 (eα ⊗⊗ni=1eαi ⊗ eβ)

)
pα1
a1
. . . pαnan e

−ia0x−ian+1y,

for α, β = 1, . . . , N and p, q = 0, 1, 2, . . .. Then we have the following
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Lemma 2.3. For all α, β = 1, . . . , N and p, q = 0, 1, 2, . . ., we have

(2.2) ∂xGα,p+1;β,q(x, y)− ∂yGα,p;β,q+1(x, y) =
1

~
[Gα,p(x), Gβ,q(y)]

Proof. The proof is a simple consequence of the definition of the generating series and the application
of Theorem 2.2. �

2.3. Commutativity and recursion. As consequences of Lemma 2.3 we find

Theorem 2.4. For all α, β = 1, . . . , N and p, q = −1, 0, 1, . . ., we have[
Gα,p, Gβ,q

]
= 0

Proof. One simply integrates equation (2.2) with respect to both x and y. Notice that Gα,−1 is a

Casimir of the standard quantum commutator and hence commutes automatically with all other Gβ,q.
�

Theorem 2.5. For all α = 1, . . . , N and p = −1, 0, 1, . . ., we have

∂x(D − 1)Gα,p+1 =
1

~
[
Gα,p, G1,1

]
,(2.3)

(2.4) ∂x
∂Gα,p+1

∂uβ
=

1

~
[
Gα,p, Gβ,0

]
,

where D := ε ∂∂ε + 2~ ∂
∂~ +

∑
s≥0 u

α
s

∂
∂uαs

.

Proof. Suppose p ≥ 0. For both formulae one needs to integrate with respect to y equation (2.2) with
(β, q) = (1, 1) and (β, q) = (β, 0) respectively and, for the first equation, use the following version of
the divisor equation ∫

Gα,p+1;1,1(x, y)dy = (D − 1)Gα,p+1(x),(2.5)

while for the second one, the fact that, by definition,∫
Gα,p+1;β,0(x, y)dy =

∂Gα,p+1(x)

∂uβ
.(2.6)

If p = −1, then we have

1

~
[Gα,−1, Gβ,q] =

1

~

[∑
k

ηαµp
µ
ke
ikx, Gβ,q

]
=
∑
k

ik
∂Gβ,q
∂pα−k

eikx =

∫
∂xGα,0;β,q(x, y)dy.

We again finish the proof using equation (2.5) or equation (2.6). �

2.4. String equation. We have the following immediate generalization of a Lemma from [Bur15b].

Lemma 2.6. We have G1,0 = 1
2

∫
(ηµνu

µuν) dx, so that, for any quantum differential polynomial

f = f(uα, uαx , . . .), we have 1
~
[
f,G1,0

]
= ∂xf .

Proof. The proof is the same as for the classical limit. Since DRg (0, a1, . . . , an) = π∗DRg (a1, . . . , an),

cg,n+1 (e1 ⊗⊗ni=1eαi) = π∗cg,n (⊗ni=1eαi) and Λ(ε) = π∗Λ(ε), where π : Mg,n+1 → Mg,n, the con-

tribution to G1,0 vanishes for g > 0 or n > 2. For g = 0 and n = 2 the result follows from
c0,3(e1, eµ, eν) = ηµν . �

We also have the following version of the string equation for the quantum double ramification
hierarchy.

Lemma 2.7. For all α = 1, . . . , N and d = −1, 0, 1, . . . we have

(2.7) Gα,d =
∂Gα,d+1

∂u1
.
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Proof. We have

∂Gα,d+1

∂u1
=

∑
g,n≥0

2g+n>0

(i~)g

n!
×

∑
a0,a1,...,an∈Z
α1,...,αn

(∫
DRg(a0,a1,...,an,0)

Λ

(
−ε2

i~

)
ψd+1

0 cg,n+2 (eα ⊗⊗ni=1eαi ⊗ e1)

)(
n∏
i=1

pαiai

)
e−ia0x.

The same argument as in the proof of the previous lemma shows that∫
DRg(a0,a1,...,an,0)

Λ

(
−ε2

i~

)
ψd+1

0 cg,n+2 (eα ⊗⊗ni=1eαi ⊗ e1) =

=


∫
DRg(a0,a1,...,an) Λ

(
−ε2
i~

)
ψd0cg,n+1 (eα ⊗⊗ni=1eαi) , if 2g + n > 1 and d ≥ 0,

0, if 2g + n > 1 and d = −1,

δd,−1ηαα1 , if g = 0 and n = 1.

The lemma is proved. �

2.5. Reconstruction of the hierarchy from G1,1. Notice that equation (2.3) allows us to recover

the hamiltonian density Gα,d+1 up to a constant starting from the knowledge of Gα,d and G1,1. On the
other hand recursion (2.3) is insensitive to the constant term in Gα,d. We see that the all hamiltonian

densities Gα,d can be determined up to constants starting from the knowledge of G1,1 alone (and
the fact that Gα,−1 = ηαµu

µ for any CohFT). The constant terms can be recovered using the string

equation (2.7). We conclude that, once we compute G1,1, the quantum double ramification hierarchy
is completely identified.

3. Examples

In this section we consider several examples of the quantum double ramification hierarchies. In
all these examples the corresponding cohomological field theory is semisimple. This ensures that
the densities of the quantum double ramification hierarchies in these cases are quantum differential
polynomials.

3.1. Quantum KdV hierarchy. Consider the simplest cohomological field theory:

V = 〈e1〉, η1,1 = 1, cg,n(e⊗n1 ) = 1.

In [Bur15b] it was proved that the corresponding double ramification hierarchy coincides with the
Korteweg-de Vries hierarchy. Therefore, our quantum double ramification hierarchy in this case gives
a quantization of the KdV hierarchy. In Section 3.1.1 we compute several first quantum Hamiltonians
for the full hierarchy. In Section 3.1.2 we check an explicit formula for all quantum densities in the
dispersionless limit.

We will omit the first index in the densities Gα,d and in the Hamiltonians Gα,d.

3.1.1. Full hierarchy. Let us compute the Hamiltonian G1. For the classical part G1

∣∣
~=0

we have
(see [Bur15b]):

G1

∣∣
~=0

= g1 =

∫ (
u3

6
+
ε2

24
uuxx

)
dx.

Let us compute the quantum correction. For this we have to compute the integrals∫
DRg(0,a1,...,an)

ψ1λj ,

for g, n ≥ 1 and j < g. The dimension constraint says that 2g − 2 + n = 1 + j. This equation holds
only if g = 1, j = 0 and n = 1. Therefore,

G1 − g1 = i~

(∫
DRg(0,0)

ψ1

)
p0 = −i~

(∫
M1,2

ψ1λ1

)
p0 = − i~

24

∫
udx.
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We conclude that

G1 =

∫ (
u3

6
+
ε2

24
uuxx −

i~
24
u

)
dx.

According to Section 2.5, this allows to compute all the densities Gd. The first few are

G0 =
u2

2
+
ε2

24
uxx −

i~
24
,

G1 =
u3

6
+
ε2

24
uuxx +

ε4

1152
uxxxx − i~

u+ uxx
24

− i~ε2

2880
,

G2 =
u4

24
+ ε2u

2u2

48
+ ε4

(
7u2

2

5760
+

uu4

1152

)
+ ε6 u6

82944
− i~2uu2 + u2

48
− i~ε2u+ 5u2 + 4u4

2880

− i~ε4

120960
+ (i~)2 7

5760
.

In particular, for the quantum Hamiltonian G2 we get

G2 =

∫ (
u4

24
+ ε2u

2u2

48
+ ε4uu4

480
− i~2uu2 + u2

48
− i~ε2 u

2880

)
dx.

3.1.2. Dispersionless hierarchy. Consider the dispersionless part of the quantum KdV hierarchy. Let

G
[0]
d := Gd|ε=0. Introduce the generating series

G[0](y) =
∑
d≥−1

ydG
[0]
d .

Let S(z) := e
z
2−e−

z
2

z .

Proposition 3.1. We have

G[0](y) =
1

y2S(
√
iλy)

e
yS
(
λ√
i
y∂x

)
u − y−2,(3.1)

where λ is a formal variable such that λ2 = ~.

Proof. The proposition is an immediate consequence of the following formula that was proved in [BSSZ15].
Suppose g, n ≥ 0 and 2g − 1 + n > 0, then we have∫

DRg(−
∑n
i=1 ai,a1,...,an)

ψ2g−2+n
1 = Coefz2g

(∏n
i=1 S(aiz)

S(z)

)
.

However, we would like to present another proof of equation (3.1) that is based on our recursion from
Theorem 2.5. We can reformulate recursion (2.3) in the following way:

∂x
∂

∂y
(yG[0](y)) =

y

~

[
G[0](y), G

[0]
1

]
.(3.2)

Let us check that the right-hand side of (3.1) satisfies this equation.

Denote the coefficients of the power series S(z) by si: S(z) =
∑

i≥0 siz
2i. SinceG

[0]
1 =

∫ (
u3

6 −
i~
24u
)
dx,

if we substitute (3.1) on the right-hand side of (3.2), we get

(3.3)
1

S(
√
iλy)

∑
r≥0

(
λ2y2

i

)r
sr∂

2r+1
x

(
u2

2

)
e
yS
(
λ√
i
y∂x

)
u
+

+
yλ2

2S(
√
iλy)

∑
r1,r2≥0
j≥1

i−1−r1−r2(λy)2r1+2r2sr1sr2C
2r1+1,2r2+1
j uje

yS
(
λ√
i
y∂x

)
u
.

In order to shorten computations a little bit, let us make the following rescalings:

∂x 7→ i∂x, λ 7→ λ√
i
.
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Therefore, we have to prove that

∂x
∂

∂y

(
1

yS(λy)
eyS(λy∂x)u

)
=

1

S(λy)

∑
r≥0

(λy)2rsr∂
2r+1
x

(
u2

2

)
eyS(λy∂x)u+(3.4)

+
yλ2

2S(λy)

∑
r1,r2≥0
j≥1

(λy)2r1(λy)2r2sr1sr2C̃
2r1+1,2r2+1
j uje

yS(λy∂x)u.

Here we use coefficients C̃a1,a2
j introduced in Section A.1. They are related to coefficients Ca1,a2

j by

formula (A.8). By definition of the function C̃2r1+1,2r2+1(N) (see Section A.1), we have∑
r1,r2≥0
j≥1

sr1sr2(λy)2r1(λy)2r2C̃2r1+1,2r2+1
j kj =

∑
k1+k2=k

S(λyk1)S(λyk2)k1k2 =

=
1

λ2y2

∑
k1+k2=k

(
e
λyk1

2 − e−
λyk1

2

)(
e
λyk2

2 − e−
λyk2

2

)
=

=
1

λ2y2

(
(k + 1)

(
e
λyk

2 + e−
λyk

2

)
− 2

e
λy(k+1)

2 − e−
λy(k+1)

2

e
λy
2 − e−

λy
2

)
=

=
1

λ2y2

(
k
(
e
λyk

2 + e−
λyk

2

)
− e

λy
2 + e−

λy
2

e
λy
2 − e−

λy
2

(
e
λyk

2 − e−
λyk

2

))
.

From this formula it follows that the right-hand side of (3.4) is equal to

1

S(λy)
∂xS(λy∂x)

(
u2

2

)
· eyS(λy∂x)u+(3.5)

+
1

2yS(λy)

(
∂x

(
e
λy∂x

2 + e−
λy∂x

2

)
− e

λy
2 + e−

λy
2

e
λy
2 − e−

λy
2

(
e
λy∂x

2 − e−
λy∂x

2

))
u · eyS(λy∂x)u.(3.6)

Let us compute the left-hand side of (3.4). We have

∂

∂y

(
1

yS(λy)
eyS(λy∂x)u

)
=

−λ2

2

e
λy
2 + e−

λy
2(

e
λy
2 − e−

λy
2

)2 +
λ

2

e
λy∂x

2 + e−
λy∂x

2

e
λy
2 − e−

λy
2

u

 eyS(λy∂x)u.

Therefore,

∂x
∂

∂y

(
1

yS(λy)
eyS(λy∂x)u

)
=

(
e
λy∂x

2 + e−
λy∂x

2

)
u ·
(
e
λy∂x

2 − e−
λy∂x

2

)
u

2(e
λy
2 − e−

λy
2 )

eyS(λy∂x)u+

(3.7)

+

λ
2
∂x
e
λy∂x

2 + e−
λy∂x

2

e
λy
2 − e−

λy
2

− λ

2

e
λy
2 + e−

λy
2(

e
λy
2 − e−

λy
2

)2

(
e
λy∂x

2 − e−
λy∂x

2

)u · eyS(λy∂x)u.

It is easy to see that (3.5) is equal to the first summand on the right-hand side of (3.7) and (3.6) is
equal to the second summand. Therefore, equation (3.4) is proved.

By Section 2.5, it remains to check that the right-hand side of (3.1) satisfies the string equation

∂G[0](y)

∂u
= yG[0](y) + y−1.

This is a trivial computation. The proposition is proved. �
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3.2. Quantum ILW hierarchy. Consider the cohomological field theory formed by linear Hodge
integrals:

V = 〈e1〉, η1,1 = 1, cg,n
(
e⊗n1

)
= 1 + µλ1 + . . .+ µgλg,

where µ is a formal parameter. In [Bur15b, Bur15a] it was proved that the corresponding double
ramification hierarchy coincides, up to simple rescalings, with the hierarchy of the Intermediate Long
Wave equation. In particular,

g1 =

∫ u3

6
+
∑
g≥1

ε2gµg−1 |B2g|
2(2g)!

uu2g

 dx.(3.8)

Let us compute the Hamiltonian G1 of the quantum double ramification hierarchy.

Lemma 3.2. We have

G1 =

∫ u3

6
+
∑
g≥1

ε2gµg−1 |B2g|
2(2g)!

uu2g −
i~
24
u− i~

∑
g≥1

ε2g−2µg
|B2g|
2(2g)!

uu2g

 dx.

Proof. Let us compute the quantum correction to the classical part (3.8). For this we have to compute
the integrals ∫

DRg(0,a1,...,an)
ψ1λkλg−j ,

where g, j, n ≥ 1 and k ≤ g. The dimension constraint implies that

g = k − j − n+ 3.

Therefore, we can only have the following possibilities:

1. j = n = 1 and k = g − 1.
2. j = 1, n = 2 and k = g.
3. j = 2, n = 1 and k = g.

Consider case 1. We come to the integral∫
DRg(0,0)

ψ1λ
2
g−1.

We have DRg(0, 0) = (−1)gλg. We also have λ2
g−1 = 2λgλg−2, if g ≥ 2. Since λ2

g = 0, we conclude that

the last integral vanishes, if g ≥ 2. If g = 1, then it is equal to − 1
24 and the corresponding quantum

correction is given by

−
∫

i~
24
udx.(3.9)

Consider case 2. We have (see e.g. [CMW12])∫
DRg(0,a,−a)

ψ1λgλg−1 = a2g |B2g|
(2g)!

.

The corresponding quantum correction is equal to

−i~
∫ ∑

g≥1

ε2g−2µg
|B2g|
2(2g)!

uu2g

 dx.(3.10)

Consider case 3. Since λ2
g = 0, we have∫

DRg(0,0)
ψ1λgλg−2 = 0.

So, there is no quantum correction in this case. Collecting corrections (3.9) and (3.10) we get the
statement of the lemma. �



12 ALEXANDR BURYAK AND PAOLO ROSSI

3.3. Quantum extended Toda hierarchy. Consider the cohomological field theory corresponding
to the Gromov-Witten theory of CP1. In [BR14] we proved that the double ramification hierarchy
in this case is equivalent to the extended Toda hierarchy of [CDZ04] by a composition of a certain
Miura transformation with a simple triangular transformation. In Section 3.3.1 we compute the
Hamiltonian G1,1 of the quantum double ramification hierarchy. In Section 3.3.2 we discuss how to
transform the quantum double ramification hierarchy in order to get a quantization of the extended
Toda hierarchy.

We will use our notations from [BR14, Section 6] throughout this section.

3.3.1. Quantum double ramification hierarchy for CP1.

Lemma 3.3. We have

G1,1 =

∫ (u1)2uω

2
+
∑
g≥1

ε2g B2g

(2g)!
u1u1

2g + q

(
e
ε∂x

2 + e−
ε∂x

2

2
uω − 2

)
eS(ε∂x)uω + quω

− i~
12
u1 + i~

∑
g≥1

ε2g−2 B2g

(2g)!
uω2gu

1

 dx.

Proof. The classical part G1,1

∣∣
~=0

was computed in [BR14]. Let us compute the quantum correction.
We have to compute the integrals∫

DRg(0,a1,...,an)
ψ1λg−jcg,n+1,d(1⊗⊗ni=1γi), γi ∈ {1, ω},(3.11)

where g, j, n ≥ 1. Denote by deg the cohomological degree. We have

deg cg,n+1,d (1⊗⊗ni=1γi) = 2(g − 1− 2d) +

n∑
i=1

deg γi.

Therefore, the integral (3.11) is zero unless

2g − 2 + n = 1 + g − j + g − 1− 2d+
1

2

∑
deg γi ⇔ j = 2− 2d+

1

2

∑
deg γi − n.

Since deg γi ∈ {0, 2}, we immediately conclude that d = 0 and j ≤ 2. Therefore,

j = 2 +
1

2

∑
deg γi − n.

We have the following formula:

cg,a+b,0(1⊗a ⊗ ω⊗b) =


2(−1)g−1λg−1, if b = 0,

(−1)gλg, if b = 1,

0, otherwise.

(3.12)

This implies that n ≤ 2. We have several cases:

1. j = n = 1.
2. j = 1 and n = 2.
3. j = 2.

Consider case 1. We have to compute the integrals∫
DRg(0,0)

ψ1λg−1cg,2,0
(
1⊗2
)

= (−1)g
∫
Mg,2

λgψ1λg−1cg,2,0
(
1⊗2
)

= −2

∫
Mg,2

λgλ
2
g−1ψ1.

We have λ2
g−1 = 2λg−2λg, if g ≥ 2. Therefore, the last integral vanishes, if g ≥ 2. If g = 1, then it is

equal to − 1
12 and the corresponding quantum correction is

−
∫

i~
12
u1dx.
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Consider case 2. The corresponding quantum correction is given by∑
g≥1

i~(−ε2)g−1
∑
a∈Z

(∫
DRg(0,a,−a)

ψ1λg−1(−1)gλg

)
pωap

1
−a = i~

∫ ∑
g≥1

ε2(g−1) B2g

(2g)!
uω2gu

1dx.

Consider case 3. We get that all γi’s are equal to ω. By (3.12), the integral (3.11) is zero, if n = 2.
Suppose n = 1, then ∫

DRg(0,0)
ψ1λg−2cg,2,0 (1⊗ ω) =

∫
Mg,2

λ2
gψ1λg−2 = 0.

We see that this case gives no contribution. The lemma is proved. �

3.3.2. Quantization of the extended Toda hierarchy. According to [BR14] the double ramification hier-
archy is related to the extended Toda hierarchy in the following way. Consider a Miura transformation

v1(u) = e
ε∂x

2 u1, v2(u) = S(ε∂x)uω.(3.13)

Denote by gα,d[v] the Hamiltonians of the double ramification hierarchy rewritten in the jet vari-

ables vαs . Then the Hamiltonians h
Td
α,p[v] of the extended Toda hierarchy are related to gα,p[v] by the

following triangular transformation:

h
Td
α,p[v] =

p+1∑
i=0

(Si)
µ
αgµ,p−i[v], p ≥ −1,(3.14)

where the matrices Si were defined in [BR14, Section 6.1.2].
We can easily see that the Miura transformation (3.13) naturally induces a map between the Weyl

algebra in the variables pαn and a Weyl algebra in variables p̃αn with a deformed commutator. Indeed,
introduce Fourier components of the fields vα(x):

vα(x) =
∑
n∈Z

p̃αne
inx.

Then the Miura transformation (3.13) induces a map from the Weyl algebra in the variables pαn to the
Weyl algebra in the variables p̃αn by

p1
n 7→ p̃1

n(p) = e
inε
2 p1

n, pωn 7→ p̃2
n(p) = S(inε)pωn .(3.15)

The variables p̃αn satisfy a deformed commutation relation

[p̃αm, p̃
β
n] = ~

eimε − 1

ε
δm+n,0η

αβ.

If we apply the map (3.15) to the quantum Hamiltonians Gα,p and then compose it with the triangular
transformation (3.14), we get quantized Hamiltonians of the extended Toda hierarchy. For example,

the quantized Hamiltonian H
Td
1,1[v] is equal to

H
Td
1,1[v] =

∫ (
(v1)2

2
B−(ε∂x)v2 +

(
ε∂x
2

coth

(
ε∂x
2

)
− 1

)
v1 ·

(
v1 +

i~
ε2
B−(ε∂x)v2

)
+

+q

(
ε∂x
2

coth

(
ε∂x
2

)
v2 − 2

)
ev

2 − i~
12
v1

)
dx,

where B−(z) := z
1−e−z .

Appendix A. Sums of powers

In this section we collect some facts about sums of powers. We also prove that a product of
derivatives of δ+(x) can be expressed as a linear combination of derivatives of δ+(x).
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A.1. Sums of powers. Let k ≥ 1 be a positive integer and d1, d2, . . . , dk be non-negative integers.
For any N ≥ 0 let

C̃d1,d2,...,dk(N) :=
∑

a1,...,ak∈Z≥0

a1+...+ak=N

ad1
1 . . . adkk .

Here we, by definition, put 00 := 1.

Lemma A.1. 1. The function C̃d1,...,dk(N) is a polynomial in N with rational coefficients.

2. The degree of this polynomial is k − 1 +
∑k

i=1 di and the top coefficient is equal to
∏k
i=1 di!

(k−1+
∑k
i=1 di)!

.

Proof. For d ≥ 0, the polylogarithm Li−d(z) is defined by

Li−d(z) :=
∑
k≥0

kdzk.

Note that in the case d = 0 our definition is slightly different from the standard one. It is easy to see
that

k∏
i=1

Li−di(z) =
∑
N≥0

C̃d1,...,dk(N)zN .

We have

Li−d(z) =

(
z
d

dz

)d 1

1− z
= d!

zd

(1− z)d+1
+

d∑
i=2

ai,d
zi−1

(1− z)i
,(A.1)

where ai,d are some integers. Applying the equation z
1−z = 1

1−z − 1 sufficiently many times, we can

express Li−d(z) in the following way:

Li−d(z) =
d!

(1− z)d+1
+

d∑
i=1

bi,d
(1− z)i

,

for some integers bi,d. Therefore, we have

k∏
i=1

Li−di(z) =

∏k
i=1 di!

(1− z)k+
∑
di

+

k−1+
∑
di∑

i=1

ei,d1,...,dk

(1− z)i
, ei,d1,...,dk ∈ Z.(A.2)

For any d ≥ 1, we have

1

(1− z)d
=
∑
i≥0

(i+ d− 1)(i+ d− 2) . . . (i+ 1)

(d− 1)!
zi.

From this formula it follows that the coefficient of zN on the right-hand side of (A.2) is a polynomial
in N . The second part of the lemma is also clear now. �

Denote by C̃d1,...,dk
j the coefficients of the polynomial C̃d1,...,dk(N):

C̃d1,...,dk(N) =

k−1+
∑
di∑

j=0

C̃d1,...,dk
j N j .(A.3)

By the previous lemma, the coefficients C̃d1,...,dk
j are rational. Note that C̃d1,...,dk

0 = 0, if at least one di
is non-zero.

Lemma A.2. Suppose that d1, . . . , dk ≥ 1. Then the coefficient C̃d1,...,dk
j is equal to zero, if j 6=

k − 1 +
∑
di (mod 2).

Proof. We have

k∏
i=1

Li−di(z) =

k−1+
∑
di∑

j=1

C̃d1,...,dk
j Li−j(z).(A.4)



DOUBLE RAMIFICATION CYCLES AND QUANTUM INTEGRABLE SYSTEMS 15

From (A.1) it follows that the polylogarithm Li−d(z) is a rational function in z. Moreover, from the
middle part of equation (A.1) it follows that

Li−d

(
1

z

)
= (−1)d+1Li−d(z), if d ≥ 1.(A.5)

Let us replace z by 1
z in equation (A.4). Then we get

(−1)k+
∑
di

k∏
i=1

Li−di(z) =

k−1+
∑
di∑

j=1

(−1)j+1C̃d1,...,dk
j Li−j(z).

Therefore, we obtain

k−1+
∑
di∑

j=1

C̃d1,...,dk
j Li−j(z) =

k−1+
∑
di∑

j=1

(−1)k−1+
∑
di−jC̃d1,...,dk

j Li−j(z).

From (A.1) it also follows that the functions Li−d(z), d ≥ 0, are linearly independent. We conclude

that the coefficient C̃d1,...,dk
j can be non-zero only if j = k − 1 +

∑
di (mod 2). �

Now we want to prove an auxiliary lemma that we will use in Appendix B. Let k ≥ 1 and n ≥ 0.
Consider variables a1, . . . , an, b1, . . . , bk and b. Let

A := (a1, . . . , an), and B := (b1, . . . , bk).

For any polynomial P (A, b,B) ∈ C[a1, . . . , an, b, b1, . . . , bk], define the function Sb,B[P ](A,N) by

Sb,B[P ](A,N) :=
∑

b,b1,...,bk∈Z≥1

b+
∑
bi=N

P (A, b,B)

k∏
i=1

bi +
1

2

∑
b1,...,bk∈Z≥1∑

bi=N

P (A, 0, B)

k∏
i=1

bi, N ≥ 0.

From Lemma A.1 it follows that the function Sb,B[P ](A,N) is a polynomial in a1, . . . , an and N of
degree not more than 2k + degP . Note that

Sb,B(A, 0) = 0.(A.6)

Lemma A.3. Suppose a polynomial P (A, b,B) is even. Then the polynomial Sb,B[P ](A,N) is also
even.

Proof. By linearity, it is sufficient to prove the lemma when P is a monomial:

P =

(
n∏
i=1

arii

)
bd

(
k∏
i=1

bdii

)
.

If d ≥ 1, then the lemma follows from Lemma A.2. Suppose d = 0. Then we proceed in the same way

as in the proof of Lemma A.2. Let D :=
∑k

i=1 di. We have

Sb,B[P ](A,N)∏
arii

=
D+2k∑
j=1

cjN
j , cj ∈ Q.

Therefore,

1∏
arii

∑
N≥0

Sb,B[P ](A,N)zN =
D+2k∑
j=1

cjLi−j(z).

From the definition of Sb,B[P ](A,N) it follows that

1∏
arii

∑
N≥0

Sb,B[P ](A,N)zN =
1

2

1 + z

1− z

k∏
i=1

Li−di−1(z).(A.7)

Equation (A.5) implies that the right-hand side of (A.7) is multiplied by (−1)D+1 under the map
z 7→ 1

z . Therefore, the coefficient cj is zero unless j = D (mod 2). The lemma is proved. �
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A.2. Products of derivatives of δ+(x). Recall that

δ
(s)
+ (x) =

∑
k≥0

(ik)seikx, s ≥ 0.

Lemma A.4. Suppose n ≥ 1 and a1, . . . , an ≥ 1. The product
∏n
i=1 δ

(ai)
+ (x) can be expressed in the

following way:

n∏
i=1

δ
(ai)
+ (x) = (−i)n−1

n−1+
∑
ai∑

j=1

Ca1,...,an
j δ

(j)
+ ,

where

Ca1,...,an
j =

{
(−1)

n−1+
∑
ai−j

2 C̃a1,...,an
j , if j = n− 1 +

∑n
i=1 ai (mod 2),

0, otherwise.
(A.8)

Proof. We have

n∏
i=1

δ
(ai)
+ (x) = i

∑
ai
∑
N≥0

C̃a1,...,an(N)eiNx
by eq. (A.3)

=

n−1+
∑
ai∑

j=1

i
∑
ai−jC̃a1,...,an

j δ
(j)
+ (x) =

= (−i)n−1

n−1+
∑
ai∑

j=1

in−1+
∑
ai−jC̃a1,...,an

j δ
(j)
+ (x).

By Lemma A.2, the coefficient C̃a1,...,an
j can be non-zero only if j = n − 1 +

∑n
i=1 ai (mod 2). The

lemma is proved. �

Appendix B. Polynomiality of tautological integrals

In this section we prove that the integral of an arbitrary tautological class over the double ramifica-
tion cycle DRg(a1, . . . , an) is a polynomial in the ramification multiplicities a1, . . . , an. In Section B.1
we briefly recall the notion of the tautological ring in the cohomology of the moduli space of curves.
Section B.2 is devoted to the proof of the polynomiality statement.

B.1. Tautological classes. The system of tautological rings is defined to be the set of the smallest
C-subalgebras of the cohomology rings,

RH∗(Mg,n) ⊂ H∗(Mg,n;C),

satisfying the following two properties:

(1) The system is closed under push-forward via all maps forgetting markings:

π∗ : RH∗(Mg,n)→ RH∗(Mg,n−1).

(2) The system is closed under push-forward via all gluing maps:

gl∗ : RH∗(Mg1,n1+1)⊗C RH
∗(Mg2,n2+1)→ RH∗(Mg1+g2,n1+n2),

gl∗ : RH∗(Mg−1,n+2)→ RH∗(Mg,n).

While the definition appears restrictive, natural algebraic constructions typically yield cohomology
classes lying in the tautological ring. For example, boundary classes, the standard ψ, κ, and λ classes
all lie in the tautological ring.

The tautological ring RH∗(Mg,n) can be also described as an image of a certain finite-dimensional
C-algebra Sg,n, called the strata algebra. We recommend the reader the paper [PPZ15, Sections 0.2,
0.3] as a very good introduction in this subject.
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B.2. Polinomiality of integrals. Recall that the double ramification cycle DRg(a1, . . . , an) is de-
fined for arbitrary integers a1, . . . , an such that a1 + . . .+ an = 0. We remind the reader the following
two properties:

DRg(−a1, . . . ,−an) = DRg(a1, . . . , an),(B.1)

DRg(0, . . . , 0) = (−1)gλg.

Proposition B.1. Let n ≥ 1. For an arbitrary tautological class α ∈ RH∗(Mg,n) the integral∫
DRg(a1,...,an)

α

is a polynomial in a1, . . . , an. Moreover, this polynomial is even and its degree is less or equal to 2g.

Proof. There is nothing to prove for n = 1. Suppose n ≥ 2. We will use the notations from [PPZ15,
Sections 0.2, 0.3]. The space Sg,n has a basis whose elements are the isomorphism classes of pairs
[Γ, γ], where

Γ = (V,H,L, g : V → Z≥0, v : H → V, ι : H → H)

is a stable graph of genus g with n legs and

γ =
∏
v∈V

∏
i≥1

κi[v]xi[v] ·
∏
h∈H

ψ
y[h]
h ∈ H∗(MΓ;C)(B.2)

is a basic class on

MΓ :=
∏
v∈V
Mg(v),n(v).

There is a canonical morphism

ξΓ : MΓ →Mg,n.

The map q : Sg,n → H∗(Mg,n) is defined by

q([Γ, γ]) := ξΓ∗(γ).

The tautological ring RH∗(Mg,n) coincides with the image of q.
Without loss of generality we can assume that α = q([Γ, γ]). We proceed by induction on the

number of edges in the graph Γ. Suppose it has no edges, then MΓ =Mg,n and

α = γ =
∏
i≥1

κxii ·
n∏
i=1

ψyii .(B.3)

It is well-known (see e.g. [Ion02, Section 2.1]) that the class (B.3) can be expressed as a linear combi-
nation of classes of the form

πm∗

(
n+m∏
i=1

ψdii

)
,

for some m’s, where πm : Mg,n+m →Mg,n is the map that forgets the last m marked points. We have∫
DRg(a1,...,an)

πm∗

(
n+m∏
i=1

ψdii

)
=

∫
DRg(a1,...,an,0,...,0)

n+m∏
i=1

ψdii .

In [BSSZ15] it is proved that an integral of an arbitrary monomial in psi-classes over the double
ramification cycle DRg(b1, . . . , bl) is an even polynomial in b1, . . . , bl of degree not more than 2g.
Therefore, the integral

∫
DRg(a1,...,an) α is an even polynomial in a1, . . . , an of degree not greater than 2g.

Suppose the graph Γ has l edges and l ≥ 1. Let us choose some edge e. Suppose e is separating,
then if we cut it in two half-edges, then the graph Γ will become a disjoint union of two stable graphs.
Denote them by Γ1 and Γ2. Let Vi, Hi and Li be the set of vertices, the set of half-edges and the set
of legs of the graph Γi correspondingly. Denote by gi the genus of the graph Γi. Let

γk :=
∏
v∈Vk

∏
i≥1

κi[v]xi[v] ·
∏
h∈Hk

ψ
y[h]
h ∈ H∗(MΓk ;C), k = 1, 2.
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Denote by gl : Mg1,|L1|+1 ×Mg2,|L2|+1 →Mg,n the gluing morphism. We see that

q([Γ, γ]) = ξΓ∗(γ) = gl∗ (ξΓ1∗(γ1)⊗ ξΓ2∗(γ2)) .

Recall that for a subset I = {i1, i2, . . .}, i1 < i2 < . . ., of {1, 2, . . . , n} we use the following notations:

AI = (ai1 , ai2 , . . .), aI =
∑
i∈I

ai.

We have (see [BSSZ15])

gl∗DRg(a1, . . . , an) = DRg1(AL1 ,−aL1)⊗DRg2(AL2 ,−aL2).

Thus, we get∫
DRg(a1,...,an)

q([Γ, γ]) =

(∫
DRg1 (AL1

,−aL1
)
ξΓ1∗(γ1)

)(∫
DRg2 (AL2

,−aL2
)
ξΓ2∗(γ2)

)
.(B.4)

The number of edges in each graph Γi is less than l. Therefore, by induction assumption, both factors
on the right-hand side of (B.4) are even polynomials in ai’s of degrees not more than 2g1 and 2g2

correspondingly. Therefore, the integral on the right-hand side of (B.4) is an even polynomial in ai’s
of degree not more than 2(g1 + g2) = 2g.

Suppose that the edge e is non-separating. Denote by Γ̃ the stable graph obtained from Γ by
cutting the edge e in two half-edges. We mark two new legs by n+ 1 and n+ 2 correspondingly. The
space M

Γ̃
is naturally isomorphic to MΓ. Let gl : Mg−1,n+2 → Mg,n be the gluing morphism. We

can decompose the map ξΓ : MΓ →Mg,n in the following way:

MΓ M
Γ̃

Mg−1,n+2 Mg,n
∼

ξΓ

ξ
Γ̃ gl

Therefore, we have
q([Γ, γ]) = ξΓ∗(γ) = gl∗(ξΓ̃∗(γ̃)),

where γ̃ is the cohomology class on M
Γ̃

induced from γ by the isomorphism M
Γ̃

∼→MΓ. Therefore,∫
DRg(a1,...,an)

q([Γ, γ]) =

∫
gl∗(DRg(a1,...,an))

ξ
Γ̃∗(γ̃).(B.5)

Denote by [n] the set {1, 2, . . . , n}. We have ([Zvo])

gl∗DRg(a1, . . . , an) =

(B.6)

=
∑

ItJ=[n]
aI>0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1

b≥1, b+
∑
bi=aI

∏k
i=1 bi
k!

DRg1(AI ,
n+1

−b ,−B) �DRg2(AJ ,
n+2

b , B)+(B.7)

+
∑

ItJ=[n]
aI>0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1

b≥1, b+
∑
bi=aI

∏k
i=1 bi
k!

DRg1(AI ,
n+2

−b ,−B) �DRg2(AJ ,
n+1

b , B)+(B.8)

+
1

2

∑
ItJ=[n]
aI>0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1∑

bi=aI

∏k
i=1 bi
k!

DRg1(AI ,
n+1

0 ,−B) �DRg2(AJ ,
n+2

0 , B)+(B.9)

+
1

2

∑
ItJ=[n]
aI>0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1∑

bi=aI

∏k
i=1 bi
k!

DRg1(AI ,
n+2

0 ,−B) �DRg2(AJ ,
n+1

0 , B).(B.10)
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Here the notation
n+1

−b means that the point marked by n + 1 has ramification multiplicity −b. We
are grateful to D. Zvonkine for informing us about this formula.

Consider an arbitrary decomposition ItJ = [n] and numbers g1, g2 ≥ 0, k ≥ 1, such that g1+g2+k =
g. Denote by Φg1,g2,k,I,J the stable graph described as follows:

• It has two vertices with k edges between them;
• The genus of the first vertex is g1 and the genus of the second one is g2;
• The first vertex contains the legs marked by I and also the leg marked by n+ 1. The second

vertex contains the legs marked by J and also the leg marked by n+ 2.

We see that each term on the right-hand side of formula (B.6) has the form

ξΦg1,g2,k,I,J∗(β1 ⊗ β2),

where β1 and β2 are double ramification cycles onMg1,|I|+k+1 andMg2,|J |+k+1 correspondingly. From
formulas in [PPZ15, Section 0.3] it follows that the class

ξ∗Φg1,g2,k,I,J
(
ξ

Γ̃∗(γ̃)
)
∈ H∗(MΦg1,g2,k,I,J

;C)

in the cohomology of

MΦg1,g2,k,I,J
=Mg1,|I|+k+1 ×Mg2,|J |+k+1

can be expressed in the following way:

ξ∗Φg1,g2,k,I,J
(
ξ

Γ̃∗(γ̃)
)

=
∑
j

ej

(
ξ

Γ̃j,1∗(γ̃j,1)
)
⊗
(
ξ

Γ̃j,2∗(γ̃j,2)
)
,

where Γ̃j,i are stable graphs, γ̃j,i are basic classes and ej are some rational coefficients. Of course, Γ̃j,i, γ̃j,i
and ej depend on g1, g2, k, I, J , but in order to shorten the exposition of the paper, we omit it in their
notations. Most importantly, from the procedure, described in [PPZ15], it follows that the number of

edges the graphs Γ̃j,i is not more than the number of edges in the graph Γ̃, so it is not more than l−1.
From the induction assumption it follows that the function

1

k!

∑
j

ej

∫
DRg1 (AI ,

n+1

−b ,−B)

ξ
Γ̃j,1∗ (γ̃j,1)

(∫
DRg2 (AJ ,

n+2

b ,B)

ξ
Γ̃j,2∗ (γ̃j,2)

)

is an even polynomial in a1, . . . , an, b, b1, . . . , bk of degree not greater than 2(g1 + g2). Denote it by

Pg1,g2,k,I,J(A, b,B).

Let us prove that the integral (B.5) is equal to

∑
ItJ=[n]

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

Sb,B[Pg1,g2,k,I,J ](A, aI).(B.11)
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Consider the part of the integral (B.5), that corresponds to the term (B.7) in the expression for
gl∗(DRg(a1, . . . , an)):∑

ItJ=[n]
aI>0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1

b≥1, b+
∑
bi=aI

∏k
i=1 bi
k!

∫
DRg1 (AI ,

n+1

−b ,−B)�DRg2 (AJ ,

n+2

b ,B)

ξ
Γ̃∗(γ̃) =

=
∑

ItJ=[n]
aI>0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1

b≥1, b+
∑
bi=aI

∏k
i=1 bi
k!

∑
j

ej×

×

∫
DRg1 (AI ,

n+1

−b ,−B)

ξ
Γ̃j,1∗(γ̃j,1)

(∫
DRg2 (AJ ,

n+2

b ,B)

ξ
Γ̃j,2∗(γ̃j,2)

)
=

=
∑

ItJ=[n]
aI>0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1

b≥1, b+
∑
bi=aI

(
k∏
i=1

bi

)
Pg1,g2,k,I,J(A, b,B).(B.12)

Doing the same computation with the term (B.9) and adding it to (B.12), we get∑
ItJ=[n]
aI>0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

Sb,B[Pg1,g2,k,I,J ](A, aI).(B.13)

Let us consider the part of the integral (B.5), that corresponds to the term (B.8). We obtain:∑
ItJ=[n]
aI<0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1

b≥1, b+
∑
bi=−aI

∏k
i=1 bi
k!

∑
j

ej×

×

(∫
DRg1 (AI ,

n+1

b ,B)

ξ
Γ̃j,1∗(γ̃j,1)

)∫
DRg2 (AJ ,

n+2

−b ,−B)

ξ
Γ̃j,2∗(γ̃j,2)

 by eq. (B.1)
=

=
∑

ItJ=[n]
aI<0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1

b≥1, b+
∑
bi=−aI

∏k
i=1 bi
k!

∑
j

ej×

×

∫
DRg1 (−AI ,

n+1

−b ,−B)

ξ
Γ̃j,1∗(γ̃j,1)

(∫
DRg2 (−AJ ,

n+2

b ,B)

ξ
Γ̃j,2∗(γ̃j,2)

)
=

=
∑

ItJ=[n]
aI<0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

∑
B=(b1,...,bk)∈Zk≥1

b≥1, b+
∑
bi=−aI

(
k∏
i=1

bi

)
Pg1,g2,k,I,J(−A, b,B).(B.14)

Doing the same computation for (B.10) and adding it to (B.14) we get∑
ItJ=[n]
aI<0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

Sb,B[Pg1,g2,k,I,J ](−A,−aI)
by Lemma A.3

=
∑

ItJ=[n]
aI<0

∑
k≥1

∑
g1,g2≥0

g1+g2+k=g

Sb,B[Pg1,g2,k,I,J ](A, aI).

Summing the last expression with (B.13) and using (A.6), we get (B.11). By Lemma A.3, the
sum (B.11) is an even polynomial in a1, . . . , an of degree at most 2g. The proposition is proved. �

References

[Bur15a] A. Buryak, Dubrovin-Zhang hierarchy for the Hodge integrals, Communications in Number Theory and
Physics 9 (2015), no. 2, 239-271.



DOUBLE RAMIFICATION CYCLES AND QUANTUM INTEGRABLE SYSTEMS 21

[Bur15b] A. Buryak, Double ramification cycles and integrable hierarchies, Communications in Mathematical Physics 336
(2015), no. 3, 1085-1107.

[BR14] A. Buryak, P. Rossi, Recursion relations for double ramification hierarchies, to be published in Communications
in Mathematical Physics, arXiv:1411.6797.

[BSSZ15] A. Buryak, S. Shadrin, L. Spitz, D. Zvonkine, Integrals of psi-classes over double ramification cycles, American
Journal of Mathematics 137 (2015), no. 3, 699-737.

[CDZ04] G. Carlet, B. Dubrovin, Y. Zhang, The extended Toda hierarchy, Moscow Mathematical Journal 4 (2004),
no. 2, 313-332.

[CMW12] R. Cavalieri, S. Marcus, J. Wise, Polynomial families of tautological classes on Mrt
g,n, Journal of Pure and

Applied Algebra 216 (2012), no. 4, 950-981.
[DZ05] B. A. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-

Witten invariants, a new 2005 version of arXiv:math/0108160v1, 295 pp.
[EGH00] Y. Eliashberg, A. Givental and H. Hofer, Introduction to symplectic field theory, GAFA 2000 Visions in Math-

ematics special volume, part II, 560-673, 2000.
[FR11] O. Fabert, P. Rossi, String, dilaton and divisor equation in Symplectic Field Theory, International Mathematics

Research Notices 2011, no. 19, 4384-4404.
[Ion02] E.-N. Ionel, Topological recursive relations in H2g(Mg,n), Inventiones Mathematicae 148 (2002), no. 3, 627-658.

[PPZ15] R. Pandharipande, A. Pixton, D. Zvonkine, Relations on Mg,n via 3-spin structures, Journal of the American
Mathematical Society 28 (2015), no. 1, 279-309.

[Ros08] P. Rossi, Gromov-Witten invariants of target curves via Symplectic Field Theory, Journal of Geometry and
Physics 58 (2008), no. 8, 931-941.

[Ros10] P. Rossi, Integrable systems and holomorphic curves, Proceedings of the Gökova Geometry-Topology Confer-
ence 2009, 34-57, Int. Press, Somerville, MA, 2010.

[Zvo] D. Zvonkine, Intersection of double loci with boundary strata, unpublished note.

A. Buryak:
Department of Mathematics, ETH Zurich,
Ramistrasse 101 8092, HG G 27.1, Zurich, Switzerland

E-mail address: buryaksh at gmail.com

P. Rossi:
IMB, UMR 5584 CNRS, Université de Bourgogne,
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