### Article

## Rescheduling Traffic on a Partially Blocked Segment of Railway with a Siding

The paper presents a polynomial-time algorithm for rescheduling traffic when one track of a double-track railway becomes unavailable, the remaining track has a siding, and there are two categories of trains—priority trains such as passenger trains and ordinary trains such as the majority of freight trains. The presented algorithm minimises the negative effect, caused by the track blockage, first for the priority trains and then for the ordinary trains on the set of all schedules optimal for the priority trains.

We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion of vertices. Every hereditary class can be defined by a set of its forbidden induced subgraphs. There are numerous open cases for the complexity of the problem even for hereditary classes with small forbidden structures. We completely determine the complexity of the problem for classes defined by forbidding a five-vertex path and any set of fragments with at most five vertices. Additionally, we also prove polynomial-time solvability of the problem for some two classes of a similar type. The notion of a boundary class is a helpful tool for analyzing the computational complexity of graph problems in the family of hereditary classes. Three boundary classes were known for the dominating set problem prior to this paper. We present a new boundary class for it.

We completely determine the complexity status of the vertex 3-colorability problem for the problem restricted to all hereditary classes defined by at most 3 forbidden induced subgraphs each on at most 5 vertices. We also present a complexity dichotomy for the problem and the family of all hereditary classes defined by forbidding an induced *bull* and any set of induced subgraphs each on at most 5 vertices.

We completely determine the complexity status of the dominating set problem for hereditary graph classes defined by forbidden induced subgraphs with at most five vertices.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.