### Article

## A randomized coordinate descent method with volume sampling

We analyze the coordinate descent method with a new coordinate selection strategy, called volume sampling. This strategy prescribes selecting subsets of variables of certain size proportionally to the determinants of principal submatrices of the matrix, which bounds the curvature of the objective function. In the particular case when the size of the subsets equals one, volume sampling coincides with the well-known strategy of sampling coordinates proportionally to their Lipschitz constants. For the coordinate descent with volume sampling, we establish the convergence rates for both convex and strongly convex problems. Our theoretical results show that, by increasing the size of the subsets, it is possible to accelerate the method up to the factor which depends on the spectral gap between the corresponding largest eigenvalues of the curvature matrix. Several numerical experiments confirm our theoretical conclusions.

In this paper we consider the task of inner objects mapping for the building with a bunch of moving around it autonomous agents which use narrow beam of radio waves using WiFi frequency (2.4 GHz). Linear model of pixel-wise radio waves attenuation is considered. SIRT algorithm with TV and Tikhonov regularizations is used for the task of tomography reconstruction. Properties of the presented model are studied during simulation using synthetic data consisting of 8 buildings with inner object with different shapes. Dependency between mapping quality and transmission power is found. Simulation results confirm suggested approachs usability

This paper discusses the solution of nonlinear integral equations with noisy integral kernels as they appear in nonparametric instrumental regression. We propose a regularized Newton-type iteration and establish convergence and convergence rate results. A particular emphasis is on instrumental regression models where the usual conditional mean assumption is replaced by a stronger independence assumption. We demonstrate for the case of a binary instrument that our approach allows the correct estimation of regression functions which are not identifiable with the standard model. This is illustrated in computed examples with simulated data.

Convergence rates in total variation are established for some models of queueing theory and reliability theory. Analysis is based on renewal technique and asymptotic results for the renewal function. It is shown that convergence rate has an exponential asymptotics when distribution function of regeneration period satisfies Cramer's condition. Results concerning polynomial convergence are also obtained.

The paper provides some examples of mutually dual unconstrained optimization problems originating from regularization problems for systems of linear equations and/or inequalities. The solution of each of these mutually dual problems can be found from the solution of the other problem by means of simple formulas. Since mutually dual problems have different dimensions, it is natural to solve the unconstrained optimization problem of the smaller dimension.

In this paper we introduce a unified analysis of a large family of variants of proximal stochastic gradient descent (SGD) which so far have required different intuitions, convergence analyses, have different applications, and which have been developed separately in various communities. We show that our framework includes methods with and without the following tricks, and their combinations: variance reduction, importance sampling, mini-batch sampling, quantization, and coordinate sub-sampling. As a by-product, we obtain the first unified theory of SGD and randomized coordinate descent (RCD) methods, the first unified theory of variance reduced and non-variance-reduced SGD methods, and the first unified theory of quantized and non-quantized methods. A key to our approach is a parametric assumption on the iterates and stochastic gradients. In a single theorem we establish a linear convergence result under this assumption and strong-quasi convexity of the loss function. Whenever we recover an existing method as a special case, our theorem gives the best known complexity result. Our approach can be used to motivate the development of new useful methods, and offers pre-proved convergence guarantees. To illustrate the strength of our approach, we develop five new variants of SGD, and through numerical experiments demonstrate some of their properties.

A computable estimate of the readiness coefficient to its stationary value for a standard binary-state system is established in the case where working time and repair time distributions have heavy tails.

We consider the problem of minimizing the strongly convex sum of a finite number of convex functions. Standard algorithms for solving this problem in the class of incremental/stochastic methods have at most a linear convergence rate. We propose a new incremental method whose convergence rate is superlinear – the Newton-type incremental method (NIM). The idea of the method is to introduce a model of the objective with the same sum-of-functions structure and further update a single component of the model per iteration. We prove that NIM has a superlinear local convergence rate and linear global convergence rate. Experiments show that the method is very effective for problems with a large number of functions and a small number of variables.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.

The problem of minimizing the root mean square deviation of a uniform string with clamped ends from an equilibrium position is investigated. It is assumed that the initial conditions are specified and the ends of the string are clamped. The Fourier method is used, which enables the control problem with a partial differential equation to be reduced to a control problem with a denumerable system of ordinary differential equations. For the optimal control problem in the l2 space obtained, it is proved that the optimal synthesis contains singular trajectories and chattering trajectories. For the initial problem of the optimal control of the vibrations of a string it is also proved that there is a unique solution for which the optimal control has a denumerable number of switchings in a finite time interval.

For a class of optimal control problems and Hamiltonian systems generated by these problems in the space *l *2, we prove the existence of extremals with a countable number of switchings on a finite time interval. The optimal synthesis that we construct in the space *l *2 forms a fiber bundle with piecewise smooth two-dimensional fibers consisting of extremals with a countable number of switchings over an infinite-dimensional basis of singular extremals.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

In this paper, we construct a new distribution corresponding to a real noble gas as well as the equation of state for it.