### Article

## Волны-убийцы в 2011-2018 годах

The cases of “freak waves” occurred in the period from 2011 to 2018, information on which is currently available,

are analyzed. 210 cases of abnormally large waves that caused destruction, human loss and injury, are

identified. A map of events is compiled, the sea depth for each case (deep / shallow water, coast) is determined,

and the characteristics of freak waves are analyzed.

Results of the analysis of long time series of sea level for June - September, 2009 near the Aniva cape (Sakhalin), recorded by pressure bottom station placed on depth of 12 m are given. There are 394 abnormal big waves, waves satisfying to freak wave amplitude criterion (the wave height exceeds the significant height more then twice) recorded. The amplification during six events exceeds 2.5 times. The cumulative frequency of the abnormal wave appearance is described by the Poisson distribution as follows from the theory of extreme statistics. Freak waves occurred on the average twice a day which is in good comparison with the Raleigh prediction for narrow-band Gaussian wave field.

The properties of extreme wave storms in the Darss Sill area, SW Baltic Sea, are analysed based on waverider data for 1991-2010 and long-term numerical simulations. The long-term significant wave height is HS ~0.7 m and the most frequent wave periods 2-4 s. The largest measured HS is 4.46 m. The typical measured and modelled wave periods differ by up to 2 s. The annual maximum HS has notched behaviour, with an increase for 1958-1990 and since 1993, and a drastic decrease in 1991-1992. The measured annual average and maximum HS have changed insignificantly in 1991-2010 but the threshold for the top 1% of waves has considerably decreased.

Plane periodic oscillations of an infinitely deep fluid are studied in the case of a nonuniform pressure distribution over its free surface. The fluid flow is governed by an exact solution of the Euler equations in the Lagrangian variables. The dynamics of an oscillating standing soliton are described, together with the scenario of the soliton evolution and the birth of a wave of an anomalously large amplitude against the background of the homogeneous Gerstner undulation (freak wave model). All the flows are nonuniformly vortical.

One of the key advances in genome assembly that has led to a significant improvement in contig lengths has been improved algorithms for utilization of paired reads (mate-pairs). While in most assemblers, mate-pair information is used in a post-processing step, the recently proposed Paired de Bruijn Graph (PDBG) approach incorporates the mate-pair information directly in the assembly graph structure. However, the PDBG approach faces difficulties when the variation in the insert sizes is high. To address this problem, we first transform mate-pairs into edge-pair histograms that allow one to better estimate the distance between edges in the assembly graph that represent regions linked by multiple mate-pairs. Further, we combine the ideas of mate-pair transformation and PDBGs to construct new data structures for genome assembly: pathsets and pathset graphs.

Papers about natural protection territories

Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding.

Neuronal nicotinic acetylcholine receptors (NNRs) of the α7 subtype have been shown to contribute to the release of dopamine in the nucleus accumbens. The site of action and the underlying mechanism, however, are unclear. Here we applied a circuit modeling approach, supported by electrochemical in vivo recordings, to clarify this issue. Modeling revealed two potential mechanisms for the drop in accumbal dopamine efflux evoked by the selective α7 partial agonist TC-7020. TC-7020 could desensitize α7 NNRs located predominantly on dopamine neurons or glutamatergic afferents to them or, alternatively, activate α7 NNRs located on the glutamatergic afferents to GABAergic interneurons in the ventral tegmental area. Only the model based on desensitization, however, was able to explain the neutralizing effect of coapplied PNU-120596, a positive allosteric modulator. According to our results, the most likely sites of action are the preterminal α7 NNRs controlling glutamate release from cortical afferents to the nucleus accumbens. These findings offer a rationale for the further investigation of α7 NNR agonists as therapy for diseases associated with enhanced mesolimbic dopaminergic tone, such as schizophrenia and addiction

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.