### Article

## Open Saito theory for A and D singularities

A well-known construction of B. Dubrovin and K. Saito endows the parameter space of a universal unfolding of a simple singularity with a Frobenius manifold structure. In our paper, we present a generalization of this construction for the singularities of types A and D that gives a solution of the open WDVV equations. For the A-singularity, the resulting solution describes the intersection numbers on the moduli space of r-spin disks, introduced recently in a work of the 2nd author, E. Clader and R. Tessler. In the 2nd part of the paper, we describe the space of homogeneous polynomial solutions of the open WDVV equations associated to the Frobenius manifolds of finite irreducible Coxeter groups.

The local multiplicities of the caustics, the Maxwell sets, and the complex Stokes' sets in the spaces of versal deformations of Pham singularities (that is, of germs of holomorphic functions C^n --> C^1 which are expressed by the sums of degrees of the coordinate functions) are calculated

We study the relation between topological string theory and singularity theory using the partition function of A_N-1 topological string defined by matrix integral of Kontsevich type. Genus expansion of the free energy is considered, and the genus g=0 contribution is shown to be described by a special solution of N-reduced dispersionless KP system. We show a universal correspondences between the time variables of dispersionless KP hierarchy and the flat coordinates associated with versal deformations of simple singularities of type A. We also study the behavior of topological matter theory on the sphere in a topological gravity background, to clarify the role of the topological string in the singularity theory. Finally we make some comment on gravitational phase transition.

We investigate the connection between the models of topological conformal theory and noncritical string theory with Saito Frobenius manifolds. For this, we propose a new direct way to calculate the flat coordinates using the integral representation for solutions of the Gauss–Manin system connected with a given Saito Frobenius manifold. We present explicit calculations in the case of a singularity of type *A**n*. We also discuss a possible generalization of our proposed approach to *SU*(*N*)*k*/(*SU*(*N*)*k*+1 × *U*(1)) Kazama–Suzuki theories. We prove a theorem that the potential connected with these models is an isolated singularity, which is a condition for the Frobenius manifold structure to emerge on its deformation manifold. This fact allows using the Dijkgraaf–Verlinde–Verlinde approach to solve similar Kazama–Suzuki models.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.