Article
Компьютерное конструирование соединений с кристаллической структурой мелилита
Mechanical performances of titanium biomedical implants manufactured by superplastic forming are strongly related to the process parameters: the thickness distribution along the formed sheet has a key role in the evaluation of post-forming characteristics of the prosthesis. In this work, a finite element model able to reliably predict the thickness distribution after the superplastic forming operation was developed and validated in a case study. The material model was built for the investigated titanium alloy (Ti6Al4V-ELI) upon results achieved through free inflation tests in different pressure regimes. Thus, a strain and strain rate dependent material behaviour was implemented in the numerical model. It was found that, especially for relatively low strain rates, the strain rate sensitivity index of the investigated titanium alloy significantly decreases during the deformation process. Results on the case study highlighted that the strain rate has a strong influence on the thickness profile, both on its minimum value and on the position in which such a minimum is found.
The ХХV International scientific – technical conference “Foundry 2018” was held of the 18-20 April 2018 at “Rostov” hotel in the city of Pleven, Bulgaria. Its aim is to provide a meeting place for scholars from different countries to present their scientific achievements and to discuss the problems of casting production.
The structural and spectroscopic features of the EuAl3(BO3)4 individual skeletal microcrystals synthesized by a melt solution method have been studied. Their infrared spectra taken from the as-grown microcrystal surfaces mainly contain the lines of the rhombohedral modification of EuAl3(BO3)4 and additional peaks of its monoclinic modification. TEM and X-ray diffraction studies confirm that these additional peaks in the IR spectra belong to the monoclinic C2/c polytype of the EuAl3(BO3)4 compound. We are the first to demonstrate the presence of coherent monoclinic domains in rhombohedral EuAl3(BO3)4 crystals by TEM. Cathodoluminance spectroscopy shows that the microcrystals generate strong emission lines in the range 580–630 nm, and their intensities are strongly influenced by the crystal orientation.