• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Quantum fluctuations and phase coherence in superconducting nanowires

Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 100. No. 014520. P. 014520-1-014520-7.
Радкевич А., Semenov A. G., Заикин А. Д.

The quantum behavior of superconducting nanowires may essentially depend on the employed experimental setup. Here we investigate a setup that enables passing equilibrium supercurrent across an arbitrary segment of the wire without restricting fluctuations of its superconducting phase. The low temperature physics of the system is determined by a combined effect of collective soundlike plasma excitations and quantum phase slips. At T=0 the wire exhibits two quantum phase transitions, both being controlled by the dimensionless wire impedance g. While thicker wires with g>16 stay superconducting, in the thinnest wires with g<2 the supercurrent is totally destroyed by quantum fluctuations. The intermediate phase 2<g>16 is characterized by two different correlation lengths demonstrating superconductinglike behavior at shorter scales combined with vanishing superconducting response in the long scale limit.