### Article

## Allele fixation probability in a Moran model with fluctuating fitness landscapes

Evolution on changing fitness landscapes (seascapes) is an important problem in evolutionary biology. We

consider the Moran model of finite population evolution with selection in a randomly changing, dynamic

environment. In the model, each individual has one of the two alleles, wild type or mutant. We calculate the

fixation probability by making a proper ansatz for the logarithm of fixation probabilities. This method has been

used previously to solve the analogous problem for the Wright-Fisher model. The fixation probability is related to

the solution of a third-order algebraic equation (for the logarithm of fixation probability).We consider the strong

interference of landscape fluctuations, sampling, and selection when the fixation process cannot be described by

the mean fitness. Such an effect appears if the mutant allele has a higher fitness in one landscape and a lower

fitness in another, compared with the wild type, and the product of effective population size and fitness is large.

We provide a generalization of the Kimura formula for the fixation probability that applies to these cases. When

the mutant allele has a fitness (dis-)advantage in both landscapes, the fixation probability is described by the

mean fitness.

To describe virus evolution, it is necessary to define a fitness landscape. In this article, we consider the microscopic models with the advanced version of neutral network fitness landscapes. In this problem setting, we suppose a fitness difference between one-point mutation neighbors to be small. We construct a modification of the Wright–Fisher model, which is related to ordinary infinite population models with nearly neutral network fitness landscape at the large population limit. From the microscopic models in the realistic sequence space, we derive two versions of nearly neutral network models: with sinks and without sinks. We claim that the suggested model describes the evolutionary dynamics of RNA viruses better than the traditional Wright–Fisher model with few sequences.

In this study, we considered the model by Beckman and Loeb [Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 14140] for the mutator phenomena. We construct an infinite population Crow-Kimura model with a mutator gene, directed mutations, a linear fitness function, and a finite genome length. We solved analytically the dynamics of the model using the generating function method. Such models provide realistic predictions for finite population sizes and have been widely discussed recently. The analytical formulas provided can be used to calculate the advantage of the mutator mechanism for the accumulation of mutations in cancer biology.

To describe virus evolution, it is necessary to define a fitness landscape. In this article, we consider the microscopic models with the advanced version of neutral network fitness landscapes. In this problem setting, we suppose a fitness difference between one-point mutation neighbors to be small. We construct a modification of the Wright–Fisher model, which is related to ordinary infinite population models with nearly neutral network fitness landscape at the large population limit. From the microscopic models in the realistic sequence space, we derive two versions of nearly neutral network models: with sinks and without sinks. We claim that the suggested model describes the evolutionary dynamics of RNA viruses better than the traditional Wright–Fisher model with few sequences.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.