• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Transcranial alternating current stimulation of the primary motor cortex: intensity effects

Brain Stimulation. 2019. Vol. 12. No. 2. P. 492-492.

Transcranial alternating current stimulation (tACS) can be used to modulate brain activity. tACS was shown to induce frequency-, state-, and phase- dependent effects which makes tACS a neurostimulation technique that provides a more valuable predictable outcome. However, the impact of different tACS intensities has not been systematically investigated yet. Here, we proposed to investigate the effects of tACS of the primary motor cortex (M1) delivered at different intensities.

There is a common assumption that application of stimulation for longer duration or for higher intensity leads to more reliable physiological and behavioral effects. However, previous studies performed using different transcranial electrical stimulation methods such as transcranial direct current stimulation (tDCS) and/or at high-frequency such as tACS at ripple range, showed non-monotonic effect of stimulation intensity. Nevertheless, tDCS and high-frequency tACS potentially rely on different mechanisms of neuromodulation with respect to conventional tACS delivered at EEG range (1 – 70 Hz).

In this study we applied 20 Hz tACS to the primary motor cortex (M1) to investigate potential non-monotonic effect of tACS intensities (ranging from 0.25 mA to 2 mA with 0.25 mA interval between conditions) on the M1 excitability measured as the peak-to-peak amplitude of TMS-induced motor evoked potentials (MEPs). As for control, we used 1 mA 10 Hz (alpha) tACS and a no stimulation condition.

Preliminary results (N = 9) showed increase of MEPs for higher intensities (1.5 mA, 2 mA) of stimulation. In addition, an interesting effect emerged for those subjects with a lower motor threshold which showed a higher MEPs modulation effect of beta-tACS