### Article

## Self-shaping of cavity-polariton systems created by resonant broadband excitation

The dynamics of a pure low polariton (LP) system created by resonant broadband excitation in a wide range of wave vectors was investigated in a high-Q GaAs-based microcavity. The LP system is shown to inherit the high spatial coherence from the laser pulse and does not lose it during decay. As a result, its dynamics is well controlled by the spatial and momentum distributions of photons in the exciting pulse and described by the Gross-Pitaevskii equations. In particular, the purely dynamic formation of the highly populated coherent LP state was implemented at the LP band bottom in the cavity excited in a large spot by converging ps-long Gaussian laser pulses when the active region of the cavity is in front of its waist. The formed state is found to persist for several picoseconds until the LP-LP repulsion leads to the creation of high-energy LPs dissipating from the ground state with high velocities

We study the case where the values of random variables increase without bound.

We single out the main features of the mathematical theory of noble gases. It is proved that the points of degeneracy of the Bose gas fractal dimension in momentum space coincide with the critical points of noble gases, while the jumps of the critical indices and the Maxwell rule are related to tunnel quantization in thermodynamics. We consider semiclassical methods for tunnel quantization in thermodynamics as well as those for second and ultrasecond quantization (the creation and annihilation operators for pairs of particles). Each noble gas is associated with a new critical point of the limit negative pressure. The negative pressure is equivalent to covering the (P,Z) diagram by the second sheet.

We studied a far-field emission pattern for microlasers with InGaAs/GaAs quantum well-dots in the active region. Angular-resolved electroluminescence spectra measurement revealed various far-field patterns depending on current and resonance mode.

We single out the main features of the mathematical theory of noble gases. It is proved that the points of degeneracy of the Bose gas fractal dimension in momentum space coincide with the critical points of noble gases, while the jumps of the critical indices and the Maxwell rule are related to tunnel quantization in thermodynamics. We consider semiclassical methods for tunnel quantization in thermodynamics as well as those for second and ultrasecond quantization (the creation and annihilation operators for pairs of particles). Each noble gas is associated with a new critical point of the limit negative pressure. The negative pressure is equivalent to covering the (P,Z)- diagram by the second sheet.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .

The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.