### Article

## Bootstrap confidence sets for spectral projectors of sample covariance

Let X_1, ... ,X_n be i.i.d. sample in R^p with zero mean and the covariance matrix S. The problem of recovering the projector onto the eigenspace of S from these observations naturally arises in many applications. Recent technique from [Koltchinskii and Lounici, 2015b] helps to study the asymptotic distribution of the distance in the Frobenius norm between the true projector P_r on the subspace of the r-th eigenvalue and its empirical counterpart \hat{P}_r in terms of the effective trace of S. This paper offers a bootstrap procedure for building sharp confidence sets for the true projector P_r from the given data. This procedure does not rely on the asymptotic distribution of || P_r - \hat{P}_r ||_2 and its moments, it applies for small or moderate sample size n and large dimension p. The main result states the validity of the proposed procedure for finite samples with an explicit error bound on the error of bootstrap approximation. This bound involves some new sharp results on Gaussian comparison and Gaussian anti-concentration in high dimension. Numeric results confirm a nice performance of the method in realistic examples.

This chapter proposes new parametric model adequacy tests for possibly nonlinear and nonstationary time series models with noncontinuous data distribution, which is often the case in applied work. In particular, we consider the correct specification of parametric conditional distributions in dynamic discrete choice models, not only of some particular conditional characteristics such as moments or symmetry. Knowing the true distribution is important in many circumstances, in particular to apply efficient maximum likelihood methods, obtain consistent estimates of partial effects, and appropriate predictions of the probability of future events. We propose a transformation of data which under the true conditional distribution leads to continuous uniform iid series. The uniformity and serial independence of the new series is then examined simultaneously. The transformation can be considered as an extension of the integral transform tool for noncontinuous data. We derive asymptotic properties of such tests taking into account the parameter estimation effect. Since transformed series are iid we do not require any mixing conditions and asymptotic results illustrate the double simultaneous checking nature of our test. The test statistics converges under the null with a parametric rate to the asymptotic distribution, which is case dependent, hence we justify a parametric bootstrap approximation. The test has power against local alternatives and is consistent. The performance of the new tests is compared with classical specification checks for discrete choice models.

Upper bounds for the closeness of two centered Gaussian measures in the class of balls in a sepa- rable Hilbert space are obtained. The bounds are optimal with respect to the dependence on the spectra of the covariance operators of the Gaussian measures. The inequalities cannot be improved in the general case.

This book presents recent non-asymptotic results for approximations in multivariate statistical analysis. The book is unique in its focus on results with the correct error structure for all the parameters involved. Firstly, it discusses the computable error bounds on correlation coefficients, MANOVA tests and discriminant functions studied in recent papers. It then introduces new areas of research in high-dimensional approximations for bootstrap procedures, Cornish–Fisher expansions, power-divergence statistics and approximations of statistics based on observations with random sample size. Lastly, it proposes a general approach for the construction of non-asymptotic bounds, providing relevant examples for several complicated statistics. It is a valuable resource for researchers with a basic understanding of multivariate statistics.

This paper discusses a bootstrap-based test, which checks if finite moments exist, and indicates cases of possible misapplication. It notes, that a procedure for finding the smallest power to which observations need to be raised, such that the test rejects a hypothesis that the corresponding moment is finite, works poorly as an estimator of the tail index or moment estimator. This is the case especially for very low- and high-order moments. Several examples of correct usage of the test are also shown. The main result is derived analytically, and a Monte-Carlo experiment is presented.

A sample X_1,...,X_n consisting of шndependent identically distributed vectors in Rp with zero mean and a covariance matrix \Sigma is considered. The recovery of spectral projectors of high-dimensional covariance matrices from a sample of observations is a key problem in statistics arising in numerous applications. In their 2015 work, V.Koltchinskii and K.Lounici obtained non-asymptotic bounds for the Frobenius norm \|\hat P_r − P_r \|_2^2 of the distance between sample and true projectors and studied asymptotic behavior for large samples. More specifically, asymptotic confidence sets for the true projector \P_r were constructed assuming that the moment characteristics of the observations are known. This paper describes a bootstrap procedure for constructing confidence sets for the spectral projector \P_r of the covariance matrix \Sigmna from given data. This approach does not use the asymptotical distribution of \|\hat P_r − P_r \|_2^2 and does not require the computation of its moment characteristics. The performance of the bootstrap approximation procedure is analyzed.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.