### Article

## Self-organized criticality and pattern emergence through the lens of tropical geometry

Tropical geometry, an established field in pure mathematics, is a place where string theory, mirror symmetry, computational algebra, auction theory, and so forth meet and influence one another. In this paper, we report on our discovery of a tropical model with self-organized criticality (SOC) behavior. Our model is continuous, in contrast to all known models of SOC, and is a certain scaling limit of the sandpile model, the first and archetypical model of SOC. We describe how our model is related to pattern formation and proportional growth phenomena and discuss the dichotomy between continuous and discrete models in several contexts. Our aim in this context is to present an idealized tropical toy model (cf. Turing reaction-diffusion model), requiring further investigation.

Toric geometry exhibited a profound relation between algebra and topology on one side and combinatorics and convex geometry on the other side. In the last decades, the interplay between algebraic and convex geometry has been explored and used successfully in a much more general setting: first, for varieties with an algebraic group action (such as spherical varieties) and recently for all algebraic varieties (construction of Newton-Okounkov bodies). The main goal of the conference is to survey recent developments in these directions. Main topics of the conference are: Theory of Newton polytopes and Newton-Okounkov bodies; Toric geometry, geometry of spherical varieties, Schubert calculus, geometry of moduli spaces; Tropical geometry and convex geometry; Real algebraic geometry and fewnomial theory; Polynomial vector fields and the Hilbert 16th problem.

This volume contains the proceedings of the International Workshop on Tropical and Idempotent Mathematics, held at the Independent University of Moscow, Russia, from August 26-31, 2012. The main purpose of the conference was to bring together and unite researchers and specialists in various areas of tropical and idempotent mathematics and applications. This volume contains articles on algebraic foundations of tropical mathematics as well as articles on applications of tropical mathematics in various fields as diverse as economics, electroenergetic networks, chemical reactions, representation theory, and foundations of classical thermodynamics. This volume is intended for graduate students and researchers interested in tropical and idempotent mathematics or in their applications in other areas of mathematics and in technical sciences

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class. Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class associated to Euler's Gamma-function. We illustrate in the case of toric varieties, toric complete intersections and Grassmannians how this conjecture follows from mirror symmetry. We also prove that Gamma conjecture is compatible with taking hyperplane sections, and give a heuristic argument how the mirror oscillatory integral and the Gamma class for the projective space arise from the polynomial loop space.

Tropical algebra is an emerging field with a number of applications in various areas of mathematics. In many of these applications appeal to tropical polynomials allows to study properties of mathematical objects such as algebraic varieties and algebraic curves from the computational point of view. This makes it important to study both mathematical and computational aspects of tropical polynomials. In this paper we prove tropical Nullstellensatz and moreover we show effective formulation of this theorem. Nullstellensatz is a next natural step in building algebraic theory of tropical polynomials and effective version is relevant for computational aspects of this field.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.